Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Wavelet Transform Based Detection of the First-Degree Atrioventricular Block

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00555154" target="_blank" >RIV/68081731:_____/21:00555154 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9662877" target="_blank" >https://ieeexplore.ieee.org/document/9662877</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/CinC53138.2021.9662877" target="_blank" >10.23919/CinC53138.2021.9662877</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Wavelet Transform Based Detection of the First-Degree Atrioventricular Block

  • Popis výsledku v původním jazyce

    Introduction: First-degree atrioventricular block (AVB I) is a pathology defined on ECG by a PR interval greater than 200 msec. This paper aims to automatically detect AVB I by measuring: the length of the PR interval. Method: Our method consists of the following steps: a) Records with atrial fibrillation or atrial flutter were excluded. b) QRS complexes were detected. c) QRS onset and T offset was detected for each ECG cycle. The median distance between QRS onset and the end of the previous T-wave is calculated (marked as X). d) QRSs were aligned and clustered according to morphological similarity. QRSs of the most frequent morphology were averaged. e) QRS onset and offset were detected for the averaged QRS. The signal between QRS onset and offset was replaced by a line intersected by the QRS onset and offset points. This signal was transformed by a wavelet transform. f) The P wave was detected in the transformed signal. The P onset was detected in the section from QRS onset minus X to the P wave position. g) AVB I was detected when the PR interval was longer than 200 msec. Results: The algorithm was set up and validated on private data and tested on publicly available databases. The algorithm achieves sensitivity 0.81, 0.81, 0.82, 0.84 and specificity 0.91, 0.90, 0.86, 0.93 for CPSC, CPSC-Extra, PTB-XL and Georgia database, respectively.

  • Název v anglickém jazyce

    Wavelet Transform Based Detection of the First-Degree Atrioventricular Block

  • Popis výsledku anglicky

    Introduction: First-degree atrioventricular block (AVB I) is a pathology defined on ECG by a PR interval greater than 200 msec. This paper aims to automatically detect AVB I by measuring: the length of the PR interval. Method: Our method consists of the following steps: a) Records with atrial fibrillation or atrial flutter were excluded. b) QRS complexes were detected. c) QRS onset and T offset was detected for each ECG cycle. The median distance between QRS onset and the end of the previous T-wave is calculated (marked as X). d) QRSs were aligned and clustered according to morphological similarity. QRSs of the most frequent morphology were averaged. e) QRS onset and offset were detected for the averaged QRS. The signal between QRS onset and offset was replaced by a line intersected by the QRS onset and offset points. This signal was transformed by a wavelet transform. f) The P wave was detected in the transformed signal. The P onset was detected in the section from QRS onset minus X to the P wave position. g) AVB I was detected when the PR interval was longer than 200 msec. Results: The algorithm was set up and validated on private data and tested on publicly available databases. The algorithm achieves sensitivity 0.81, 0.81, 0.82, 0.84 and specificity 0.91, 0.90, 0.86, 0.93 for CPSC, CPSC-Extra, PTB-XL and Georgia database, respectively.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/FW01010305" target="_blank" >FW01010305: Umělá inteligence pro autonomní klasifikaci EKG v rámci online telemedicínské platformy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2021 Computing in Cardiology (CinC)

  • ISBN

    978-166547916-5

  • ISSN

    2325-8861

  • e-ISSN

    2325-887X

  • Počet stran výsledku

    4

  • Strana od-do

    168

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Brno

  • Datum konání akce

    12. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku