Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Mathematical Modelling of Automated Coverage Optimization in Wireless 5G and Beyond Deployments

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU138036" target="_blank" >RIV/00216305:26220/20:PU138036 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/10/24/8853" target="_blank" >https://www.mdpi.com/2076-3417/10/24/8853</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app10248853" target="_blank" >10.3390/app10248853</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Mathematical Modelling of Automated Coverage Optimization in Wireless 5G and Beyond Deployments

  • Popis výsledku v původním jazyce

    The need to optimize the deployment and maintenance costs for service delivery in wireless networks is an essential task for each service provider. The goal of this paper is to optimize the number of service centres (gNodeB) to cover selected customer locations based on the given requirements. This optimization need is especially emerging in emerging 5G and beyond cellular systems that are characterized by a large number of simultaneously connected devices, which is typically difficult to handle by the existing wireless systems. Currently, the network infrastructure planning tools used in the industry include Atoll Radio Planning Tool, RadioPlanner, and others. These tools do not provide an automatic selection of a deployment position for specific gNodeB nodes in a given area with defined requirements. To design a network with those tools, a great deal of manual tasks that could be reduced by more sophisticated solutions are required. For that reason, our goal here and our main contribution of this paper are the development of new mathematical models that fit the currently emerging scenarios of wireless network deployment and maintenance. Next, we also provide the design and implementation of a verification methodology for these models through provided simulations. For the performance evaluation of the models, we utilize test datasets and discuss a case study scenario from a selected district in Central Europe.

  • Název v anglickém jazyce

    On Mathematical Modelling of Automated Coverage Optimization in Wireless 5G and Beyond Deployments

  • Popis výsledku anglicky

    The need to optimize the deployment and maintenance costs for service delivery in wireless networks is an essential task for each service provider. The goal of this paper is to optimize the number of service centres (gNodeB) to cover selected customer locations based on the given requirements. This optimization need is especially emerging in emerging 5G and beyond cellular systems that are characterized by a large number of simultaneously connected devices, which is typically difficult to handle by the existing wireless systems. Currently, the network infrastructure planning tools used in the industry include Atoll Radio Planning Tool, RadioPlanner, and others. These tools do not provide an automatic selection of a deployment position for specific gNodeB nodes in a given area with defined requirements. To design a network with those tools, a great deal of manual tasks that could be reduced by more sophisticated solutions are required. For that reason, our goal here and our main contribution of this paper are the development of new mathematical models that fit the currently emerging scenarios of wireless network deployment and maintenance. Next, we also provide the design and implementation of a verification methodology for these models through provided simulations. For the performance evaluation of the models, we utilize test datasets and discuss a case study scenario from a selected district in Central Europe.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences - Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

    1-25

  • Kód UT WoS článku

    000602763300001

  • EID výsledku v databázi Scopus

    2-s2.0-85098517648