Modeling Optimal Location Distribution for Deployment of Flying Base Stations as On-Demand Connectivity Enablers in Real-World Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141418" target="_blank" >RIV/00216305:26220/21:PU141418 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/21/16/5580" target="_blank" >https://www.mdpi.com/1424-8220/21/16/5580</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21165580" target="_blank" >10.3390/s21165580</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling Optimal Location Distribution for Deployment of Flying Base Stations as On-Demand Connectivity Enablers in Real-World Scenarios
Popis výsledku v původním jazyce
The amount of internet traffic generated during mass public events is significantly growing in a way that requires methods to increase the overall performance of the wireless network service. Recently, legacy methods in form of mobile cell sites, frequently called cells on wheels, were used. However, modern technologies are allowing the use of unmanned aerial vehicles (UAV) as a platform for network service extension instead of ground-based techniques. This results in the development of flying base stations (FBS) where the number of deployed FBSs depends on the demanded network capacity and specific user requirements. Large-scale events, such as outdoor music festivals or sporting competitions, requiring deployment of more than one FBS need a method to optimally distribute these aerial vehicles to achieve high capacity and minimize the cost. In this paper, we present a mathematical model for FBS deployment in large-scale scenarios. The model is based on a location set covering problem and the goal is to minimize the number of FBSs by finding their optimal locations. It is restricted by users’ throughput requirements and FBSs’ available throughput, also, all users that require connectivity must be served. Two meta-heuristic algorithms (cuckoo search and differential evolution) were implemented and verified on a real example of a music festival scenario. The results show that both algorithms are capable of finding a solution. The major difference is in the performance where differential evolution solves the problem six to eight times faster, thus it is more suitable for repetitive calculation. The obtained results can be used in commercial scenarios similar to the one used in this paper where providing sufficient connectivity is crucial for good user experience. The designed algorithms will serve for the network infrastructure design and for assessing the costs and feasibility of the use-case.
Název v anglickém jazyce
Modeling Optimal Location Distribution for Deployment of Flying Base Stations as On-Demand Connectivity Enablers in Real-World Scenarios
Popis výsledku anglicky
The amount of internet traffic generated during mass public events is significantly growing in a way that requires methods to increase the overall performance of the wireless network service. Recently, legacy methods in form of mobile cell sites, frequently called cells on wheels, were used. However, modern technologies are allowing the use of unmanned aerial vehicles (UAV) as a platform for network service extension instead of ground-based techniques. This results in the development of flying base stations (FBS) where the number of deployed FBSs depends on the demanded network capacity and specific user requirements. Large-scale events, such as outdoor music festivals or sporting competitions, requiring deployment of more than one FBS need a method to optimally distribute these aerial vehicles to achieve high capacity and minimize the cost. In this paper, we present a mathematical model for FBS deployment in large-scale scenarios. The model is based on a location set covering problem and the goal is to minimize the number of FBSs by finding their optimal locations. It is restricted by users’ throughput requirements and FBSs’ available throughput, also, all users that require connectivity must be served. Two meta-heuristic algorithms (cuckoo search and differential evolution) were implemented and verified on a real example of a music festival scenario. The results show that both algorithms are capable of finding a solution. The major difference is in the performance where differential evolution solves the problem six to eight times faster, thus it is more suitable for repetitive calculation. The obtained results can be used in commercial scenarios similar to the one used in this paper where providing sufficient connectivity is crucial for good user experience. The designed algorithms will serve for the network infrastructure design and for assessing the costs and feasibility of the use-case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/FV40309" target="_blank" >FV40309: Monitorování, vyhledávání, detekce, navádění a zaměřování pomocí obrazu z dronu - systém vidění pro obranné systémy a IZS složky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-3210
Svazek periodika
21
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
1-22
Kód UT WoS článku
000690139300001
EID výsledku v databázi Scopus
2-s2.0-85113136667