Multiple Instance Learning Framework Used For ECG Premature Contraction Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU140465" target="_blank" >RIV/00216305:26220/20:PU140465 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/21:PU141500
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple Instance Learning Framework Used For ECG Premature Contraction Localization
Popis výsledku v původním jazyce
We propose the model combining convolutional neural network with multiple instance learning in order to localize the premature atrial contraction and premature ventricular contraction. The model is based on ResNet architecture modified for 1D signal processing. Model was trained on China Physiological Signal Challenge 2018 database extended by manually labeled ground truth positions of premature complexes. The presented method did not reach satisfying results in PAC localization (with dice = 0.127 for avg-pooling implementation). On the other hand, results of localization of PVCs were comparable with other published studies (with dice = 0.952 for avg-pooling implementation).
Název v anglickém jazyce
Multiple Instance Learning Framework Used For ECG Premature Contraction Localization
Popis výsledku anglicky
We propose the model combining convolutional neural network with multiple instance learning in order to localize the premature atrial contraction and premature ventricular contraction. The model is based on ResNet architecture modified for 1D signal processing. Model was trained on China Physiological Signal Challenge 2018 database extended by manually labeled ground truth positions of premature complexes. The presented method did not reach satisfying results in PAC localization (with dice = 0.127 for avg-pooling implementation). On the other hand, results of localization of PVCs were comparable with other published studies (with dice = 0.952 for avg-pooling implementation).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů