Survey of Decentralized Solutions with Mobile Devices for User Location Tracking, Proximity Detection, and Contact Tracing in the COVID-19 Era
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU142990" target="_blank" >RIV/00216305:26220/20:PU142990 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2306-5729/5/4/87" target="_blank" >https://www.mdpi.com/2306-5729/5/4/87</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/data5040087" target="_blank" >10.3390/data5040087</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Survey of Decentralized Solutions with Mobile Devices for User Location Tracking, Proximity Detection, and Contact Tracing in the COVID-19 Era
Popis výsledku v původním jazyce
Some of the recent developments in data science for worldwide disease control have involved research of large-scale feasibility and usefulness of digital contact tracing, user location tracking, and proximity detection on users' mobile devices or wearables. A centralized solution relying on collecting and storing user traces and location information on a central server can provide more accurate and timely actions than a decentralized solution in combating viral outbreaks, such as COVID-19. However, centralized solutions are more prone to privacy breaches and privacy attacks by malevolent third parties than decentralized solutions, storing the information in a distributed manner among wireless networks. Thus, it is of timely relevance to identify and summarize the existing privacy-preserving solutions, focusing on decentralized methods, and analyzing them in the context of mobile device-based localization and tracking, contact tracing, and proximity detection. Wearables and other mobile Internet of Things devices are of particular interest in our study, as not only privacy, but also energy-efficiency, targets are becoming more and more critical to the end-users. This paper provides a comprehensive survey of user location-tracking, proximity-detection, and digital contact-tracing solutions in the literature from the past two decades, analyses their advantages and drawbacks concerning centralized and decentralized solutions, and presents the authors' thoughts on future research directions in this timely research field.
Název v anglickém jazyce
Survey of Decentralized Solutions with Mobile Devices for User Location Tracking, Proximity Detection, and Contact Tracing in the COVID-19 Era
Popis výsledku anglicky
Some of the recent developments in data science for worldwide disease control have involved research of large-scale feasibility and usefulness of digital contact tracing, user location tracking, and proximity detection on users' mobile devices or wearables. A centralized solution relying on collecting and storing user traces and location information on a central server can provide more accurate and timely actions than a decentralized solution in combating viral outbreaks, such as COVID-19. However, centralized solutions are more prone to privacy breaches and privacy attacks by malevolent third parties than decentralized solutions, storing the information in a distributed manner among wireless networks. Thus, it is of timely relevance to identify and summarize the existing privacy-preserving solutions, focusing on decentralized methods, and analyzing them in the context of mobile device-based localization and tracking, contact tracing, and proximity detection. Wearables and other mobile Internet of Things devices are of particular interest in our study, as not only privacy, but also energy-efficiency, targets are becoming more and more critical to the end-users. This paper provides a comprehensive survey of user location-tracking, proximity-detection, and digital contact-tracing solutions in the literature from the past two decades, analyses their advantages and drawbacks concerning centralized and decentralized solutions, and presents the authors' thoughts on future research directions in this timely research field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data
ISSN
2306-5729
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
40
Strana od-do
1-40
Kód UT WoS článku
000601545200001
EID výsledku v databázi Scopus
2-s2.0-85091678003