On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems (vol 31, pg 245, 2020)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU143983" target="_blank" >RIV/00216305:26220/20:PU143983 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s10851-019-00927-7.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10851-019-00927-7.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems (vol 31, pg 245, 2020)
Popis výsledku v původním jazyce
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy.
Název v anglickém jazyce
On Orthogonal Projections for Dimension Reduction and Applications in Augmented Target Loss Functions for Learning Problems (vol 31, pg 245, 2020)
Popis výsledku anglicky
The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, preservation of variance and of pairwise relative distances. Investigations of their asymptotic correlation as well as numerical experiments show that a projection does usually not satisfy both objectives at once. In a standard classification problem we determine projections on the input data that balance the objectives and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning tasks and introduce a general framework of augmented target loss functions. These loss functions integrate additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of our proposed augmented target loss functions increase the accuracy.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1401" target="_blank" >LO1401: Interdisciplinární výzkum bezdrátových technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů