Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140619" target="_blank" >RIV/00216305:26220/21:PU140619 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR

  • Popis výsledku v původním jazyce

    Common Optical Character Recognition (OCR) methods benefit from the fact, that the text is distributed in images in a predictable pattern. This is not the situation with CAPTCHA systems. Utilizing OCR algorithms to overcome common web anti-abuse CAPTCHA systems is therefore a challenging task. To train a system to overcome any CAPTCHA scheme, an attacker needs a huge dataset of annotated images. And for some methods, the attacker needs not only the right answers but also an exact position of the character in the CAPTCHA image. Annotate the positions of the object in an image is a time-consuming task. In this paper, we propose a system, which can help to annotate the position of CAPTCHA character with minimal human interaction. After annotating a small sample of targeted CAPTCHA images, a YOLO-based region detection deep network is used to search for the characters’ locations.

  • Název v anglickém jazyce

    SEMI-SUPERVISED APPROACH TO TRAIN CAPTCHA LETTER POSITION DETETOR

  • Popis výsledku anglicky

    Common Optical Character Recognition (OCR) methods benefit from the fact, that the text is distributed in images in a predictable pattern. This is not the situation with CAPTCHA systems. Utilizing OCR algorithms to overcome common web anti-abuse CAPTCHA systems is therefore a challenging task. To train a system to overcome any CAPTCHA scheme, an attacker needs a huge dataset of annotated images. And for some methods, the attacker needs not only the right answers but also an exact position of the character in the CAPTCHA image. Annotate the positions of the object in an image is a time-consuming task. In this paper, we propose a system, which can help to annotate the position of CAPTCHA character with minimal human interaction. After annotating a small sample of targeted CAPTCHA images, a YOLO-based region detection deep network is used to search for the characters’ locations.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 27nd Conference STUDENT EEICT 2018

  • ISBN

    978-80-214-5942-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    436-440

  • Název nakladatele

    Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    27. 4. 2021

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku