Building an efficient OCR system for historical documents with little training data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958971" target="_blank" >RIV/49777513:23520/20:43958971 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s00521-020-04910-x.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s00521-020-04910-x.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-020-04910-x" target="_blank" >10.1007/s00521-020-04910-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Building an efficient OCR system for historical documents with little training data
Popis výsledku v původním jazyce
As the number of digitized historical documents has increased rapidly it is necessary to provide efficient methods of information retrieval and knowledge extraction to make the data accessible. Such methods are dependent on optical character recognition (OCR) which converts the document images into textual representations. This paper introduces a set of methods that allows performing an OCR on historical document images using only a small amount of real, manually annotated training data. The presented OCR system includes two main tasks: page layout analysis including text block and line segmentation and OCR. Our seg-mentation methods are based on fully convolutional networks, and the OCR approach utilizes recurrent neural networks. We show that both the segmentation and OCR tasks are feasible with only a few annotated real data samples. The experiments aim at determining the best way how to achieve good performance with the given small set of data. We also demonstrate that obtained scores are comparable or even better than the scores of several state-of-the-art systems.
Název v anglickém jazyce
Building an efficient OCR system for historical documents with little training data
Popis výsledku anglicky
As the number of digitized historical documents has increased rapidly it is necessary to provide efficient methods of information retrieval and knowledge extraction to make the data accessible. Such methods are dependent on optical character recognition (OCR) which converts the document images into textual representations. This paper introduces a set of methods that allows performing an OCR on historical document images using only a small amount of real, manually annotated training data. The presented OCR system includes two main tasks: page layout analysis including text block and line segmentation and OCR. Our seg-mentation methods are based on fully convolutional networks, and the OCR approach utilizes recurrent neural networks. We show that both the segmentation and OCR tasks are feasible with only a few annotated real data samples. The experiments aim at determining the best way how to achieve good performance with the given small set of data. We also demonstrate that obtained scores are comparable or even better than the scores of several state-of-the-art systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Computing and Applications
ISSN
0941-0643
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
17209-17227
Kód UT WoS článku
000531222300001
EID výsledku v databázi Scopus
2-s2.0-85084519412