Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Building an efficient OCR system for historical documents with little training data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958971" target="_blank" >RIV/49777513:23520/20:43958971 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007/s00521-020-04910-x.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s00521-020-04910-x.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-020-04910-x" target="_blank" >10.1007/s00521-020-04910-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Building an efficient OCR system for historical documents with little training data

  • Popis výsledku v původním jazyce

    As the number of digitized historical documents has increased rapidly it is necessary to provide efficient methods of information retrieval and knowledge extraction to make the data accessible. Such methods are dependent on optical character recognition (OCR) which converts the document images into textual representations. This paper introduces a set of methods that allows performing an OCR on historical document images using only a small amount of real, manually annotated training data. The presented OCR system includes two main tasks: page layout analysis including text block and line segmentation and OCR. Our seg-mentation methods are based on fully convolutional networks, and the OCR approach utilizes recurrent neural networks. We show that both the segmentation and OCR tasks are feasible with only a few annotated real data samples. The experiments aim at determining the best way how to achieve good performance with the given small set of data. We also demonstrate that obtained scores are comparable or even better than the scores of several state-of-the-art systems.

  • Název v anglickém jazyce

    Building an efficient OCR system for historical documents with little training data

  • Popis výsledku anglicky

    As the number of digitized historical documents has increased rapidly it is necessary to provide efficient methods of information retrieval and knowledge extraction to make the data accessible. Such methods are dependent on optical character recognition (OCR) which converts the document images into textual representations. This paper introduces a set of methods that allows performing an OCR on historical document images using only a small amount of real, manually annotated training data. The presented OCR system includes two main tasks: page layout analysis including text block and line segmentation and OCR. Our seg-mentation methods are based on fully convolutional networks, and the OCR approach utilizes recurrent neural networks. We show that both the segmentation and OCR tasks are feasible with only a few annotated real data samples. The experiments aim at determining the best way how to achieve good performance with the given small set of data. We also demonstrate that obtained scores are comparable or even better than the scores of several state-of-the-art systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    19

  • Strana od-do

    17209-17227

  • Kód UT WoS článku

    000531222300001

  • EID výsledku v databázi Scopus

    2-s2.0-85084519412