Hybrid Training Data for Historical Text OCR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43958225" target="_blank" >RIV/49777513:23520/19:43958225 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICDAR.2019.00096" target="_blank" >http://dx.doi.org/10.1109/ICDAR.2019.00096</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDAR.2019.00096" target="_blank" >10.1109/ICDAR.2019.00096</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Training Data for Historical Text OCR
Popis výsledku v původním jazyce
Current optical character recognition (OCR) systems commonly make use of recurrent neural networks (RNN) that process whole text lines. Such systems avoid the task of character segmentation necessary for character-based approaches. A disadvantage of this approach is a need of a large amount of annotated data. This can be solved by using generated synthetic data instead of costly manually annotated ones. Unfortunately, such data is often not suitable for historical documents particularly for quality reasons. This work presents a hybrid approach for generating annotated data for OCR at a low cost. We first collect a small dataset of isolated characters from historical document images. Then, we generate historical looking text lines from the generated characters. Another contribution lies in the design and implementation of an OCR system based on a convolutional-LSTM network. We first pre-train this system on hybrid data. Afterwards, the network is fine-tuned with real printed text lines. We demonstrate that this training strategy is efficient for obtaining state-of-theart results. We also show that the score of the proposed systém is comparable or even better in comparison to several state-ofthe-art systems.
Název v anglickém jazyce
Hybrid Training Data for Historical Text OCR
Popis výsledku anglicky
Current optical character recognition (OCR) systems commonly make use of recurrent neural networks (RNN) that process whole text lines. Such systems avoid the task of character segmentation necessary for character-based approaches. A disadvantage of this approach is a need of a large amount of annotated data. This can be solved by using generated synthetic data instead of costly manually annotated ones. Unfortunately, such data is often not suitable for historical documents particularly for quality reasons. This work presents a hybrid approach for generating annotated data for OCR at a low cost. We first collect a small dataset of isolated characters from historical document images. Then, we generate historical looking text lines from the generated characters. Another contribution lies in the design and implementation of an OCR system based on a convolutional-LSTM network. We first pre-train this system on hybrid data. Afterwards, the network is fine-tuned with real printed text lines. We demonstrate that this training strategy is efficient for obtaining state-of-theart results. We also show that the score of the proposed systém is comparable or even better in comparison to several state-ofthe-art systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 15th IAPR International Conference on Document Analysis and Recognition
ISBN
978-1-72813-014-9
ISSN
1520-5363
e-ISSN
—
Počet stran výsledku
6
Strana od-do
565-570
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Sydney
Datum konání akce
20. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—