Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Feature space reduction as data preprocessing for the anomaly detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140623" target="_blank" >RIV/00216305:26220/21:PU140623 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Feature space reduction as data preprocessing for the anomaly detection

  • Popis výsledku v původním jazyce

    In this paper, we present two pipelines in order to reduce the feature space for anomaly detection using the One Class SVM. As a first stage of both pipelines, we compare the performance of three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipeline and the reconstruction errors based method as the second. Both methods have potential for the anomaly detection, but the reconstruction error metrics prove to be more robust for this task. We show that the convolutional autoencoder architecture doesn't have a significant effect for this task and we prove the potential of our approach on the real world dataset.

  • Název v anglickém jazyce

    Feature space reduction as data preprocessing for the anomaly detection

  • Popis výsledku anglicky

    In this paper, we present two pipelines in order to reduce the feature space for anomaly detection using the One Class SVM. As a first stage of both pipelines, we compare the performance of three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipeline and the reconstruction errors based method as the second. Both methods have potential for the anomaly detection, but the reconstruction error metrics prove to be more robust for this task. We show that the convolutional autoencoder architecture doesn't have a significant effect for this task and we prove the potential of our approach on the real world dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings I of the 27th Conference STUDENT EEICT 2021

  • ISBN

    978-80-214-5942-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    415-419

  • Název nakladatele

    Vysoké učené Technické, Fakulta elektrotechniky a komunikačních technologií

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    27. 4. 2021

  • Typ akce podle státní příslušnosti

    CST - Celostátní akce

  • Kód UT WoS článku