Neural networks in natural sciences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43898260" target="_blank" >RIV/44555601:13440/23:43898260 - isvavai.cz</a>
Výsledek na webu
<a href="https://ans2023.ucm.sk/" target="_blank" >https://ans2023.ucm.sk/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural networks in natural sciences
Popis výsledku v původním jazyce
Artificial neural networks (ANNs) have emerged as powerful tools for addressing complex problems invarious fields, including the natural sciences. This contribution involves an exploration of the applications of artificialneural networks, specifically focusing on their use in both regression and classification tasks. We place particularemphasis on utilizing the autoencoder model within the context of the anomaly detection in natural sciences.The autoencoder, a type of unsupervised learning model, has gained significant attention due to its ability tocatch meaningful representations of input data. Its architecture comprises an encoder, which compresses the input datainto a lower-dimensional latent space, and a decoder, which reconstructs the original input from the encodedrepresentation. This unique characteristic of the autoencoder makes it well-suited for extracting valuable features fromhigh-dimensional scientific datasets. We will present some applications of the above-mentioned models in the naturalsciences and highlight the advantages, such as their ability to handle noisy and incomplete data.
Název v anglickém jazyce
Neural networks in natural sciences
Popis výsledku anglicky
Artificial neural networks (ANNs) have emerged as powerful tools for addressing complex problems invarious fields, including the natural sciences. This contribution involves an exploration of the applications of artificialneural networks, specifically focusing on their use in both regression and classification tasks. We place particularemphasis on utilizing the autoencoder model within the context of the anomaly detection in natural sciences.The autoencoder, a type of unsupervised learning model, has gained significant attention due to its ability tocatch meaningful representations of input data. Its architecture comprises an encoder, which compresses the input datainto a lower-dimensional latent space, and a decoder, which reconstructs the original input from the encodedrepresentation. This unique characteristic of the autoencoder makes it well-suited for extracting valuable features fromhigh-dimensional scientific datasets. We will present some applications of the above-mentioned models in the naturalsciences and highlight the advantages, such as their ability to handle noisy and incomplete data.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Applied Natural Sciences 2023 Proceedings
ISBN
978-80-572-0357-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
"nestrankovano"
Název nakladatele
University of SS. Cyril and Methodius in Trnava
Místo vydání
Trnava
Místo konání akce
Donovaly
Datum konání akce
18. 9. 2023
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—