Frequency and phase shifts correction of MR spectra using deep learning in time domain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU144222" target="_blank" >RIV/00216305:26220/21:PU144222 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10334-021-00947-8" target="_blank" >https://link.springer.com/article/10.1007/s10334-021-00947-8</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Frequency and phase shifts correction of MR spectra using deep learning in time domain
Popis výsledku v původním jazyce
Processing magnetic resonance spectroscopy (MRS) signals remains challenging due to hardware and physiologic processes, which may lead to frequency and phase shifts (FPS). Thus, frequency-and-phase correction (FPC) is a useful step in MRS signal processing. Deep learning (DL) has proved to be successful in a wide range of tasks, including the MR field. DL applications in MRS have recently emerged1 . It has been shown that DL can also be used for FPC2 in the frequency domain with two separated networks. In this study, we proposed a novel deep autoencoder (DAE) network for FPC. We showed that a single DAE network could learn a nonlinear low-dimensional model to predict frequency and phase shifts.
Název v anglickém jazyce
Frequency and phase shifts correction of MR spectra using deep learning in time domain
Popis výsledku anglicky
Processing magnetic resonance spectroscopy (MRS) signals remains challenging due to hardware and physiologic processes, which may lead to frequency and phase shifts (FPS). Thus, frequency-and-phase correction (FPC) is a useful step in MRS signal processing. Deep learning (DL) has proved to be successful in a wide range of tasks, including the MR field. DL applications in MRS have recently emerged1 . It has been shown that DL can also be used for FPC2 in the frequency domain with two separated networks. In this study, we proposed a novel deep autoencoder (DAE) network for FPC. We showed that a single DAE network could learn a nonlinear low-dimensional model to predict frequency and phase shifts.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů