Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning for magnetic resonance spectroscopy quantification: A time frequency analysis approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F20%3A00540863" target="_blank" >RIV/68081731:_____/20:00540863 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning for magnetic resonance spectroscopy quantification: A time frequency analysis approach

  • Popis výsledku v původním jazyce

    Magnetic resonance spectroscopy (MRS) is a technique capable of detecting chemical compounds from localized volumes in living tissues. Quantification of MRS signals is required for obtaining the metabolite concentrations of the tissue under investigation. However, reliable quantification of MRS is difficult. Recently deep learning (DL) has been used for metabolite quantification of MRS signals in the frequency domain. In another study, it was shown that DL in combination with time-frequency analysis could be used for artifact detection in MRS. In this study, we verify the hypothesis that DL in combination with time-frequency analysis can also be used for metabolite quantification and yields results more robust than DL trained with MR signals in the frequency domain. We used the complex matrix of absolute wavelet coefficients (WC) for the time-frequency representation of the signal, and convolutional neural network (CNN) implementation for DL. The comparison with DL used for quantification of data in the frequency domain is presented.

  • Název v anglickém jazyce

    Deep learning for magnetic resonance spectroscopy quantification: A time frequency analysis approach

  • Popis výsledku anglicky

    Magnetic resonance spectroscopy (MRS) is a technique capable of detecting chemical compounds from localized volumes in living tissues. Quantification of MRS signals is required for obtaining the metabolite concentrations of the tissue under investigation. However, reliable quantification of MRS is difficult. Recently deep learning (DL) has been used for metabolite quantification of MRS signals in the frequency domain. In another study, it was shown that DL in combination with time-frequency analysis could be used for artifact detection in MRS. In this study, we verify the hypothesis that DL in combination with time-frequency analysis can also be used for metabolite quantification and yields results more robust than DL trained with MR signals in the frequency domain. We used the complex matrix of absolute wavelet coefficients (WC) for the time-frequency representation of the signal, and convolutional neural network (CNN) implementation for DL. The comparison with DL used for quantification of data in the frequency domain is presented.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings II of the 26th Conference student EEICT 2020

  • ISBN

    978-80-214-5868-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    131-135

  • Název nakladatele

    UNIV TECHNOLOGY, FAC ELECTRICAL ENG & COMMUNICATION

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    23. 4. 2020

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000598376500032