A wavelet scattering convolutional network for magnetic resonance spectroscopy signal quantitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00544182" target="_blank" >RIV/68081731:_____/21:00544182 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/21:PU140482
Výsledek na webu
<a href="https://www.scitepress.org/Link.aspx?doi=10.5220/0010318502680275" target="_blank" >https://www.scitepress.org/Link.aspx?doi=10.5220/0010318502680275</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010318502680275" target="_blank" >10.5220/0010318502680275</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A wavelet scattering convolutional network for magnetic resonance spectroscopy signal quantitation
Popis výsledku v původním jazyce
Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) has been used for quantification of MRS signals in the frequency domain, and DL combined with time-frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the CNN for MRS are not well understood, CNN has no knowledge about the nature of the MRS signal and its training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network (WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering network could hopefully be also used for metabolite quantification. We showed that a WSCN could yield results more robust than QUEST (one of quantitation methods based on model fitting) and the same as a CNN while being faster, We used wavelet scattering transform to extract features from the MRS signal, and a superficial neural network implementation to predict metabolite concentrations. Effects of phase, noise, and macromolecules variation on the WSCN estimation accuracy were also investigated.
Název v anglickém jazyce
A wavelet scattering convolutional network for magnetic resonance spectroscopy signal quantitation
Popis výsledku anglicky
Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) has been used for quantification of MRS signals in the frequency domain, and DL combined with time-frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the CNN for MRS are not well understood, CNN has no knowledge about the nature of the MRS signal and its training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network (WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering network could hopefully be also used for metabolite quantification. We showed that a WSCN could yield results more robust than QUEST (one of quantitation methods based on model fitting) and the same as a CNN while being faster, We used wavelet scattering transform to extract features from the MRS signal, and a superficial neural network implementation to predict metabolite concentrations. Effects of phase, noise, and macromolecules variation on the WSCN estimation accuracy were also investigated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies
ISBN
978-989-758-490-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
(2021)
Název nakladatele
SciTePress
Místo vydání
Setúbal
Místo konání akce
online
Datum konání akce
11. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000664110100031