Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F23%3A00570880" target="_blank" >RIV/68081731:_____/23:00570880 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26220/23:PU148010

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0010482523003025" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482523003025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2023.106837" target="_blank" >10.1016/j.compbiomed.2023.106837</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data

  • Popis výsledku v původním jazyce

    Purpose: While the recommended analysis method for magnetic resonance spectroscopy data is linear combination model (LCM) fitting, the supervised deep learning (DL) approach for quantification of MR spectroscopy (MRS) and MR spectroscopic imaging (MRSI) data recently showed encouraging results, however, supervised learning requires ground truth fitted spectra, which is not practical. Moreover, this work investigates the feasibility and efficiency of the LCM-based self-supervised DL method for the analysis of MRS data. Method: We present a novel DL-based method for the quantification of relative metabolite concentrations, using quantum-mechanics simulated metabolite responses and neural networks. We trained, validated, and evaluated the proposed networks with simulated and publicly accessible in-vivo human brain MRS data and compared the performance with traditional methods. A novel adaptive macromolecule fitting algorithm is included. We investigated the performance of the proposed methods in a Monte Carlo (MC) study. Result: The validation using low-SNR simulated data demonstrated that the proposed methods could perform quantification comparably to other methods. The applicability of the proposed method for the quantification of in-vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time significantly. Conclusion: The proposed model-constrained deep neural networks trained in a self-supervised manner can offer fast and efficient quantification of MRS and MRSI data. Our proposed method has the potential to facilitate clinical practice by enabling faster processing of large datasets such as high-resolution MRSI datasets, which may have thousands of spectra.

  • Název v anglickém jazyce

    Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data

  • Popis výsledku anglicky

    Purpose: While the recommended analysis method for magnetic resonance spectroscopy data is linear combination model (LCM) fitting, the supervised deep learning (DL) approach for quantification of MR spectroscopy (MRS) and MR spectroscopic imaging (MRSI) data recently showed encouraging results, however, supervised learning requires ground truth fitted spectra, which is not practical. Moreover, this work investigates the feasibility and efficiency of the LCM-based self-supervised DL method for the analysis of MRS data. Method: We present a novel DL-based method for the quantification of relative metabolite concentrations, using quantum-mechanics simulated metabolite responses and neural networks. We trained, validated, and evaluated the proposed networks with simulated and publicly accessible in-vivo human brain MRS data and compared the performance with traditional methods. A novel adaptive macromolecule fitting algorithm is included. We investigated the performance of the proposed methods in a Monte Carlo (MC) study. Result: The validation using low-SNR simulated data demonstrated that the proposed methods could perform quantification comparably to other methods. The applicability of the proposed method for the quantification of in-vivo MRS data was demonstrated. Our proposed networks have the potential to reduce computation time significantly. Conclusion: The proposed model-constrained deep neural networks trained in a self-supervised manner can offer fast and efficient quantification of MRS and MRSI data. Our proposed method has the potential to facilitate clinical practice by enabling faster processing of large datasets such as high-resolution MRSI datasets, which may have thousands of spectra.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Biology Medicine

  • ISSN

    0010-4825

  • e-ISSN

    1879-0534

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    106837

  • Kód UT WoS článku

    000982004200001

  • EID výsledku v databázi Scopus

    2-s2.0-85151756081