Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140667" target="_blank" >RIV/00216305:26220/21:PU140667 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9420214" target="_blank" >https://ieeexplore.ieee.org/document/9420214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA52220.2021.9420214" target="_blank" >10.1109/RADIOELEKTRONIKA52220.2021.9420214</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge

  • Popis výsledku v původním jazyce

    The main focus of this paper is to use post training quantization to analyse the influence of using lower precision data types in neural networks, while avoiding the process of retraining the networks in question. The main idea is to enable usage of high accuracy neural networks in devices other than high performance servers or super computers and bring the neural network compute closer to the device collecting the data. There are two main issues with using neural networks on edge devices, the memory constraint and the computational performance. Both of these issues could be diminished if the usage of lower precision data types does not considerably reduce the accuracy of the networks in question.

  • Název v anglickém jazyce

    Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge

  • Popis výsledku anglicky

    The main focus of this paper is to use post training quantization to analyse the influence of using lower precision data types in neural networks, while avoiding the process of retraining the networks in question. The main idea is to enable usage of high accuracy neural networks in devices other than high performance servers or super computers and bring the neural network compute closer to the device collecting the data. There are two main issues with using neural networks on edge devices, the memory constraint and the computational performance. Both of these issues could be diminished if the usage of lower precision data types does not considerably reduce the accuracy of the networks in question.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    International Conference Radioelektronika 2021

  • ISBN

    978-0-7381-4436-8

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    Vysoké učení technické v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    19. 4. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000676146400023