Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141054" target="_blank" >RIV/00216305:26220/21:PU141054 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware

  • Popis výsledku v původním jazyce

    The paper is focused on creating a lightweight machine learning solution for classification of weather conditions from input images, that can process the input data in real time on embedded devices. The approach to the classification uses deep convolutional neural networks architecture with focus on lightweight design and fast inference, while providing high accuracy results. The focus on creating lightweight convolutional neural network architecture capable of classification of weather conditions also enables usage of the network in real time applications at the edge.

  • Název v anglickém jazyce

    Multi-Class Weather Classification from Single Images with Convolutional Neural Networks on Embedded Hardware

  • Popis výsledku anglicky

    The paper is focused on creating a lightweight machine learning solution for classification of weather conditions from input images, that can process the input data in real time on embedded devices. The approach to the classification uses deep convolutional neural networks architecture with focus on lightweight design and fast inference, while providing high accuracy results. The focus on creating lightweight convolutional neural network architecture capable of classification of weather conditions also enables usage of the network in real time applications at the edge.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů