Analysis of the Nosema Cells Identification for Microscopic Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140723" target="_blank" >RIV/00216305:26220/21:PU140723 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/21/9/3068" target="_blank" >https://www.mdpi.com/1424-8220/21/9/3068</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21093068" target="_blank" >10.3390/s21093068</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of the Nosema Cells Identification for Microscopic Images
Popis výsledku v původním jazyce
The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.
Název v anglickém jazyce
Analysis of the Nosema Cells Identification for Microscopic Images
Popis výsledku anglicky
The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/VI04000039" target="_blank" >VI04000039: Systém včasného záchytu infekce COVID-19 pro bezpečnost ohrožených skupin obyvatelstva s využitím umělé inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-3210
Svazek periodika
21
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000650789800001
EID výsledku v databázi Scopus
2-s2.0-85104823140