Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson’s Disease from Speech in Three Different Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335428" target="_blank" >RIV/68407700:21230/19:00335428 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-33904-3_66" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-33904-3_66</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-33904-3_66" target="_blank" >10.1007/978-3-030-33904-3_66</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson’s Disease from Speech in Three Different Languages
Popis výsledku v původním jazyce
Parkinson’s disease patients develop different speech impairments that affect their communication capabilities. The automatic assessment of the speech of the patients allows the development of computer aided tools to support the diagnosis and the evaluation of the disease severity. This paper introduces a methodology to classify Parkinson’s disease from speech in three different languages: Spanish, German, and Czech. The proposed approach considers convolutional neural networks trained with time frequency representations and a transfer learning strategy among the three languages. The transfer learning scheme aims to improve the accuracy of the models when the weights of the neural network are initialized with utterances from a different language than the used for the test set. The results suggest that the proposed strategy improves the accuracy of the models in up to 8% when the base model used to initialize the weights of the classifier is robust enough. In addition, the results obtained after the transfer learning are in most cases more balanced in terms of specificity-sensitivity than those trained without the transfer learning strategy. Springer Nature Switzerland AG 2019.
Název v anglickém jazyce
Convolutional Neural Networks and a Transfer Learning Strategy to Classify Parkinson’s Disease from Speech in Three Different Languages
Popis výsledku anglicky
Parkinson’s disease patients develop different speech impairments that affect their communication capabilities. The automatic assessment of the speech of the patients allows the development of computer aided tools to support the diagnosis and the evaluation of the disease severity. This paper introduces a methodology to classify Parkinson’s disease from speech in three different languages: Spanish, German, and Czech. The proposed approach considers convolutional neural networks trained with time frequency representations and a transfer learning strategy among the three languages. The transfer learning scheme aims to improve the accuracy of the models when the weights of the neural network are initialized with utterances from a different language than the used for the test set. The results suggest that the proposed strategy improves the accuracy of the models in up to 8% when the base model used to initialize the weights of the classifier is robust enough. In addition, the results obtained after the transfer learning are in most cases more balanced in terms of specificity-sensitivity than those trained without the transfer learning strategy. Springer Nature Switzerland AG 2019.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
9783030339036
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
697-706
Název nakladatele
Springer
Místo vydání
Wien
Místo konání akce
Havana
Datum konání akce
28. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—