Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351360" target="_blank" >RIV/68407700:21230/21:00351360 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.patrec.2021.04.011" target="_blank" >https://doi.org/10.1016/j.patrec.2021.04.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patrec.2021.04.011" target="_blank" >10.1016/j.patrec.2021.04.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages
Popis výsledku v původním jazyce
Patients suffering from neurodegenerative disorders such as Parkinson's or Huntington's disease exhibit speech impairments that affect their communication capabilities. The automatic assessment of the speech of the patients allows to develop computer aided tools to support the diagnosis and to evaluate the disease severity, which helps clinicians to make timely decisions about the treatment of the patients. This paper extends our previous studies about methods to classify patients with neurodegenerative diseases from speech. The proposed approach considers convolutional neural networks trained with time frequency representations and a transfer learning strategy to classify different speech impairments in patients that are native of different languages. The transfer learning schemes aim to improve the accuracy of the models when the weights of a neural network are initialized with utterances from a different corpus than the one used for the test set. The proposed methodology is evaluated with speech data from Parkinson's disease patients, who are Spanish, German, and Czech native speakers, Huntington's disease patients, who are Czech native speakers, and English native speakers affected by laryngeal impairments. We performed experiments in two scenarios: (1) transfer learning among languages, where a base model is transferred to classify patients with the same disease, but who speak a different language, and (2) transfer learning among diseases, where the base model is transferred to a corpus from patients with a different disease. The results suggest that the transfer learning schemes improve the accuracy in the target corpus only when the base model is accurate enough to transfer the knowledge to the target corpus. This behavior is observed in different scenarios of both transfer learning among languages and diseases.
Název v anglickém jazyce
Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages
Popis výsledku anglicky
Patients suffering from neurodegenerative disorders such as Parkinson's or Huntington's disease exhibit speech impairments that affect their communication capabilities. The automatic assessment of the speech of the patients allows to develop computer aided tools to support the diagnosis and to evaluate the disease severity, which helps clinicians to make timely decisions about the treatment of the patients. This paper extends our previous studies about methods to classify patients with neurodegenerative diseases from speech. The proposed approach considers convolutional neural networks trained with time frequency representations and a transfer learning strategy to classify different speech impairments in patients that are native of different languages. The transfer learning schemes aim to improve the accuracy of the models when the weights of a neural network are initialized with utterances from a different corpus than the one used for the test set. The proposed methodology is evaluated with speech data from Parkinson's disease patients, who are Spanish, German, and Czech native speakers, Huntington's disease patients, who are Czech native speakers, and English native speakers affected by laryngeal impairments. We performed experiments in two scenarios: (1) transfer learning among languages, where a base model is transferred to classify patients with the same disease, but who speak a different language, and (2) transfer learning among diseases, where the base model is transferred to a corpus from patients with a different disease. The results suggest that the transfer learning schemes improve the accuracy in the target corpus only when the base model is accurate enough to transfer the knowledge to the target corpus. This behavior is observed in different scenarios of both transfer learning among languages and diseases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition Letters
ISSN
0167-8655
e-ISSN
1872-7344
Svazek periodika
150
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
272-279
Kód UT WoS článku
000694715500014
EID výsledku v databázi Scopus
2-s2.0-85105246597