Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Language Generalization Using Active Learning in the Context of Parkinson’s Disease Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368598" target="_blank" >RIV/68407700:21230/23:00368598 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-40498-6_31" target="_blank" >https://doi.org/10.1007/978-3-031-40498-6_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-40498-6_31" target="_blank" >10.1007/978-3-031-40498-6_31</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Language Generalization Using Active Learning in the Context of Parkinson’s Disease Classification

  • Popis výsledku v původním jazyce

    Speech traits have enabled the evaluation and monitoring of the neurological state of different disorders, including Parkinson’s Disease (PD) using classical and deep approaches. Considering that speech contains paralinguistic information, the native language of the speaker influences the performance of the trained models when classifying the presence of the disease. Although researchers have performed several studies using corpora from different acoustic and language conditions, there is no baseline for the accuracy of a system to classify PD in cross-language scenarios. This study evaluates the generalization capability of different classical and deep methods to discriminate between PD patients and healthy speakers. The experiments are performed in cross-language scenarios. In particular, an Active Learning (AL) strategy is considered to evaluate the influence of the training data selection to improve the model’s performance under cross-language settings. The results indicate that models based on Wav2Vec 2.0 yielded the best results in detecting the presence of the disease in such non-controlled cross-language scenarios. In addition, the AL selection outperformed the results compared to a random selection of training samples. The considered AL based-approach allows to achieve high accuracies using a careful selection of training data in an adaptively manner. This is particularly important when dealing with non-annotated and limited data, such as the case of pathological speech modeling.

  • Název v anglickém jazyce

    Language Generalization Using Active Learning in the Context of Parkinson’s Disease Classification

  • Popis výsledku anglicky

    Speech traits have enabled the evaluation and monitoring of the neurological state of different disorders, including Parkinson’s Disease (PD) using classical and deep approaches. Considering that speech contains paralinguistic information, the native language of the speaker influences the performance of the trained models when classifying the presence of the disease. Although researchers have performed several studies using corpora from different acoustic and language conditions, there is no baseline for the accuracy of a system to classify PD in cross-language scenarios. This study evaluates the generalization capability of different classical and deep methods to discriminate between PD patients and healthy speakers. The experiments are performed in cross-language scenarios. In particular, an Active Learning (AL) strategy is considered to evaluate the influence of the training data selection to improve the model’s performance under cross-language settings. The results indicate that models based on Wav2Vec 2.0 yielded the best results in detecting the presence of the disease in such non-controlled cross-language scenarios. In addition, the AL selection outperformed the results compared to a random selection of training samples. The considered AL based-approach allows to achieve high accuracies using a careful selection of training data in an adaptively manner. This is particularly important when dealing with non-annotated and limited data, such as the case of pathological speech modeling.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    9783031404979

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    349-359

  • Název nakladatele

    Springer

  • Místo vydání

    Basel

  • Místo konání akce

    Pilsen

  • Datum konání akce

    4. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku