Federated Learning for Secure Development of AI Models for Parkinson’s Disease Detection Using Speech from Different Languages
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00368522" target="_blank" >RIV/68407700:21230/23:00368522 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.21437/Interspeech.2023-2108" target="_blank" >https://doi.org/10.21437/Interspeech.2023-2108</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21437/Interspeech.2023-2108" target="_blank" >10.21437/Interspeech.2023-2108</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Federated Learning for Secure Development of AI Models for Parkinson’s Disease Detection Using Speech from Different Languages
Popis výsledku v původním jazyce
Parkinson's disease (PD) is a neurological disorder impacting a person's speech. Among automatic PD assessment methods, deep learning models have gained particular interest. Recently, the community has explored cross-pathology and cross-language models which can improve diagnostic accuracy even further. However, strict patient data privacy regulations largely prevent institutions from sharing patient speech data with each other. In this paper, we employ federated learning (FL) for PD detection using speech signals from 3 real-world language corpora of German, Spanish, and Czech, each from a separate institution. Our results indicate that the FL model outperforms all the local models in terms of diagnostic accuracy, while not performing very differently from the model based on centrally combined training sets, with the advantage of not requiring any data sharing among collaborators. This will simplify inter-institutional collaborations, resulting in enhancement of patient outcomes.
Název v anglickém jazyce
Federated Learning for Secure Development of AI Models for Parkinson’s Disease Detection Using Speech from Different Languages
Popis výsledku anglicky
Parkinson's disease (PD) is a neurological disorder impacting a person's speech. Among automatic PD assessment methods, deep learning models have gained particular interest. Recently, the community has explored cross-pathology and cross-language models which can improve diagnostic accuracy even further. However, strict patient data privacy regulations largely prevent institutions from sharing patient speech data with each other. In this paper, we employ federated learning (FL) for PD detection using speech signals from 3 real-world language corpora of German, Spanish, and Czech, each from a separate institution. Our results indicate that the FL model outperforms all the local models in terms of diagnostic accuracy, while not performing very differently from the model based on centrally combined training sets, with the advantage of not requiring any data sharing among collaborators. This will simplify inter-institutional collaborations, resulting in enhancement of patient outcomes.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5107" target="_blank" >LX22NPO5107: Národní ústav pro neurologický výzkum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH 2023
ISBN
—
ISSN
2308-457X
e-ISSN
—
Počet stran výsledku
5
Strana od-do
5003-5007
Název nakladatele
ISCA - International Speech Communication Association
Místo vydání
Bochum
Místo konání akce
Dublin
Datum konání akce
21. 8. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—