Multi-modal, Object Detection, Convolutional Neural Network, RGB, Grayscale, Thermal, IR, Depth Map
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140805" target="_blank" >RIV/00216305:26220/21:PU140805 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-modal, Object Detection, Convolutional Neural Network, RGB, Grayscale, Thermal, IR, Depth Map
Popis výsledku v původním jazyce
This paper studies the information gain of various data domains that are commonly used in the modern Advanced Driving Assistant Systems (ADAS) to develop robust systems that would increase traffic safety. We could see a fast growth of many Deep Convolutional Neural Networks (DCNN) based solutions during the last several years. These methods are state-of-the-art in object detection and semantic scene segmentation. We created a small annotated dataset of synchronized RGB, grayscale, thermal, and depth map images and used the modern DCNN framework tool to evaluate the object detection robustness of different data domains and their information gain process understanding the surrounding environment of the semi-autonomous driving agent.
Název v anglickém jazyce
Multi-modal, Object Detection, Convolutional Neural Network, RGB, Grayscale, Thermal, IR, Depth Map
Popis výsledku anglicky
This paper studies the information gain of various data domains that are commonly used in the modern Advanced Driving Assistant Systems (ADAS) to develop robust systems that would increase traffic safety. We could see a fast growth of many Deep Convolutional Neural Networks (DCNN) based solutions during the last several years. These methods are state-of-the-art in object detection and semantic scene segmentation. We created a small annotated dataset of synchronized RGB, grayscale, thermal, and depth map images and used the modern DCNN framework tool to evaluate the object detection robustness of different data domains and their information gain process understanding the surrounding environment of the semi-autonomous driving agent.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
PROCEEDINGS II OF THE 27TH STUDENT EEICT 2021
ISBN
978-80-214-5943-4
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
156-160
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Brno
Datum konání akce
27. 4. 2021
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—