A System Using Artificial Intelligence to Detect and Scare Bird Flocks in the Protection of Ripening Fruit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141069" target="_blank" >RIV/00216305:26220/21:PU141069 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/21/12/4244/htm" target="_blank" >https://www.mdpi.com/1424-8220/21/12/4244/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s21124244" target="_blank" >10.3390/s21124244</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A System Using Artificial Intelligence to Detect and Scare Bird Flocks in the Protection of Ripening Fruit
Popis výsledku v původním jazyce
Flocks of birds may cause major damage to fruit crops in the ripening phase. This problem is addressed by various methods for bird scaring; in many cases, however, the birds become accustomed to the distraction, and the applied scaring procedure loses its purpose. To help eliminate the difficulty, we present a system to detect flocks and to trigger an actuator that will scare the objects only when a flock passes through the monitored space. The actual detection is performed with artificial intelligence utilizing a convolutional neural network. Before teaching the network, we employed videocameras and a differential algorithm to detect all items moving in the vineyard. Such objects revealed in the images were labeled and then used in training, testing, and validating the network. The assessment of the detection algorithm required evaluating the parameters precision, recall, and F1 score. In terms of function, the algorithm is implemented in a module consisting of a microcomputer and a connected videocamera. When a flock is detected, the microcontroller will generate a signal to be wirelessly transmitted to the module, whose task is to trigger the scaring actuator.
Název v anglickém jazyce
A System Using Artificial Intelligence to Detect and Scare Bird Flocks in the Protection of Ripening Fruit
Popis výsledku anglicky
Flocks of birds may cause major damage to fruit crops in the ripening phase. This problem is addressed by various methods for bird scaring; in many cases, however, the birds become accustomed to the distraction, and the applied scaring procedure loses its purpose. To help eliminate the difficulty, we present a system to detect flocks and to trigger an actuator that will scare the objects only when a flock passes through the monitored space. The actual detection is performed with artificial intelligence utilizing a convolutional neural network. Before teaching the network, we employed videocameras and a differential algorithm to detect all items moving in the vineyard. Such objects revealed in the images were labeled and then used in training, testing, and validating the network. The assessment of the detection algorithm required evaluating the parameters precision, recall, and F1 score. In terms of function, the algorithm is implemented in a module consisting of a microcomputer and a connected videocamera. When a flock is detected, the microcontroller will generate a signal to be wirelessly transmitted to the module, whose task is to trigger the scaring actuator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TJ04000441" target="_blank" >TJ04000441: Systém plašení špačků založený na pasivním optickém lokátoru</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-3210
Svazek periodika
21
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000667367200001
EID výsledku v databázi Scopus
2-s2.0-85108178232