Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Received Signal Strength Fingerprinting-Based Indoor Location Estimation Employing Machine Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141244" target="_blank" >RIV/00216305:26220/21:PU141244 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1424-8220/21/13/4605" target="_blank" >https://www.mdpi.com/1424-8220/21/13/4605</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s21134605" target="_blank" >10.3390/s21134605</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Received Signal Strength Fingerprinting-Based Indoor Location Estimation Employing Machine Learning

  • Popis výsledku v původním jazyce

    The fingerprinting technique is a popular approach to reveal location of persons, instruments or devices in an indoor environment. Typically based on signal strength measurement, a power level map is created first in the learning phase to align with measured values in the inference. Second, the location is determined by taking the point for which the recorded received power level is closest to the power level actually measured. The biggest limit of this technique is the reliability of power measurements, which may lack accuracy in many wireless systems. To this end, this work extends the power level measurement by using multiple anchors and multiple radio channels and, consequently, considers different approaches to aligning the actual measurements with the recorded values. The dataset is available online. This article focuses on the very popular radio technology Bluetooth Low Energy to explore the possible improvement of the system accuracy through different machine learning approaches. It shows how the accuracy–complexity trade-off influences the possible candidate algorithms on an example of three-channel Bluetooth received signal strength based fingerprinting in a one dimensional environment with four static anchors and in a two dimensional environment with the same set of anchors. We provide a literature survey to identify the machine learning algorithms applied in the literature to show that the studies available can not be compared directly. Then, we implement and analyze the performance of four most popular supervised learning techniques, namely k Nearest Neighbors, Support Vector Machines, Random Forest, and Artificial Neural Network. In our scenario, the most promising machine learning technique being the Random Forest with classification accuracy over 99%

  • Název v anglickém jazyce

    Received Signal Strength Fingerprinting-Based Indoor Location Estimation Employing Machine Learning

  • Popis výsledku anglicky

    The fingerprinting technique is a popular approach to reveal location of persons, instruments or devices in an indoor environment. Typically based on signal strength measurement, a power level map is created first in the learning phase to align with measured values in the inference. Second, the location is determined by taking the point for which the recorded received power level is closest to the power level actually measured. The biggest limit of this technique is the reliability of power measurements, which may lack accuracy in many wireless systems. To this end, this work extends the power level measurement by using multiple anchors and multiple radio channels and, consequently, considers different approaches to aligning the actual measurements with the recorded values. The dataset is available online. This article focuses on the very popular radio technology Bluetooth Low Energy to explore the possible improvement of the system accuracy through different machine learning approaches. It shows how the accuracy–complexity trade-off influences the possible candidate algorithms on an example of three-channel Bluetooth received signal strength based fingerprinting in a one dimensional environment with four static anchors and in a two dimensional environment with the same set of anchors. We provide a literature survey to identify the machine learning algorithms applied in the literature to show that the studies available can not be compared directly. Then, we implement and analyze the performance of four most popular supervised learning techniques, namely k Nearest Neighbors, Support Vector Machines, Random Forest, and Artificial Neural Network. In our scenario, the most promising machine learning technique being the Random Forest with classification accuracy over 99%

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20202 - Communication engineering and systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTC18021" target="_blank" >LTC18021: Budoucí bezdrátové a radiové komunikační sítě v reálných podmínkách (FEWERCON)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SENSORS

  • ISSN

    1424-8220

  • e-ISSN

    1424-3210

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    25

  • Strana od-do

    1-25

  • Kód UT WoS článku

    000671202400001

  • EID výsledku v databázi Scopus

    2-s2.0-85111858852