Multilingual Analysis of Speech and Voice Disorders in Patients with Parkinson's Disease
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141374" target="_blank" >RIV/00216305:26220/21:PU141374 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/65269705:_____/21:00074860
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9522597" target="_blank" >https://ieeexplore.ieee.org/document/9522597</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP52935.2021.9522597" target="_blank" >10.1109/TSP52935.2021.9522597</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multilingual Analysis of Speech and Voice Disorders in Patients with Parkinson's Disease
Popis výsledku v původním jazyce
Parkinson's disease (PD) is associated with several speech/voice disorders collectively referred to as hypokinetic dysarthria (HD). The main goal of this study is to identify acoustic features that support the diagnosis of PD while being independent of the language of a speaker. We recorded seven speech (e.g. monologue) and voice (e.g. sustained phonation) tasks in a cohort of 59 PD patients and 44 age- and gender-matched healthy controls (HC) speaking Czech or US English. A non-parametric test revealed that the best discrimination power has a measure quantifying the number of interword pauses per minute. In a consequent classification analysis, utilising logistic regression, we observed a drop in the classification accuracy from 72-73% to 67%, when moving from single-language modelling to the multilingual one. The results of this study suggest that especially the prosodic (pause-based) features could play a significant role in the automatic language-independent diagnosis of PD.
Název v anglickém jazyce
Multilingual Analysis of Speech and Voice Disorders in Patients with Parkinson's Disease
Popis výsledku anglicky
Parkinson's disease (PD) is associated with several speech/voice disorders collectively referred to as hypokinetic dysarthria (HD). The main goal of this study is to identify acoustic features that support the diagnosis of PD while being independent of the language of a speaker. We recorded seven speech (e.g. monologue) and voice (e.g. sustained phonation) tasks in a cohort of 59 PD patients and 44 age- and gender-matched healthy controls (HC) speaking Czech or US English. A non-parametric test revealed that the best discrimination power has a measure quantifying the number of interword pauses per minute. In a consequent classification analysis, utilising logistic regression, we observed a drop in the classification accuracy from 72-73% to 67%, when moving from single-language modelling to the multilingual one. The results of this study suggest that especially the prosodic (pause-based) features could play a significant role in the automatic language-independent diagnosis of PD.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NU20-04-00294" target="_blank" >NU20-04-00294: Diagnostika onemocnění s Lewyho tělísky v prodromálním stadiu založená na analýze multimodálních dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 44th International Conference on Telecommunications and Signal Processing
ISBN
978-1-6654-2933-7
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
273-277
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Brno
Datum konání akce
26. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000701604600059