Detection of Persons with Parkinson's Disease by Acoustic, Vocal, and Prosodic Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00190035" target="_blank" >RIV/68407700:21230/11:00190035 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.asru2011.org/" target="_blank" >http://www.asru2011.org/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ASRU.2011.6163978" target="_blank" >10.1109/ASRU.2011.6163978</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Persons with Parkinson's Disease by Acoustic, Vocal, and Prosodic Analysis
Popis výsledku v původním jazyce
70% to 90% of patients with Parkinson's disease (PD) show an affected voice. Various studies revealed, that voice and prosody is one of the earliest indicators of PD. The issue of this study is to automatically detect whether the speech/voice of a personis affected by PD. We employ acoustic features, prosodic features and features derived from a two-mass model of the vocal folds on different kinds of speech tests: sustained phonations, syllable repetitions, read texts and monologues. Classification isperformed in either case by SVMs. A correlation-based feature selection was performed, in order to identify the most important features for each of these systems. We report recognition results of 91% when trying to differentiate between normal speaking persons and speakers with PD in early stages with prosodic modeling. With acoustic modeling we achieved a recognition rate of 88% and with vocal modeling we achieved 79%. After feature selection these results could reatly be improved. But
Název v anglickém jazyce
Detection of Persons with Parkinson's Disease by Acoustic, Vocal, and Prosodic Analysis
Popis výsledku anglicky
70% to 90% of patients with Parkinson's disease (PD) show an affected voice. Various studies revealed, that voice and prosody is one of the earliest indicators of PD. The issue of this study is to automatically detect whether the speech/voice of a personis affected by PD. We employ acoustic features, prosodic features and features derived from a two-mass model of the vocal folds on different kinds of speech tests: sustained phonations, syllable repetitions, read texts and monologues. Classification isperformed in either case by SVMs. A correlation-based feature selection was performed, in order to identify the most important features for each of these systems. We report recognition results of 91% when trying to differentiate between normal speaking persons and speakers with PD in early stages with prosodic modeling. With acoustic modeling we achieved a recognition rate of 88% and with vocal modeling we achieved 79%. After feature selection these results could reatly be improved. But
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Automatic Speech Recognition and Understanding Workshop 2011
ISBN
978-1-4673-0367-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
478-483
Název nakladatele
IEEE Signal Processing Society
Místo vydání
Piscataway
Místo konání akce
Hawaii
Datum konání akce
11. 12. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—