Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141401" target="_blank" >RIV/00216305:26220/21:PU141401 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-80432-9_37" target="_blank" >https://doi.org/10.1007/978-3-030-80432-9_37</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-80432-9_37" target="_blank" >10.1007/978-3-030-80432-9_37</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images

  • Popis výsledku v původním jazyce

    Adaptive optics (AO) flood illumination camera acquires retinal images with a limited field of view, which can be extended by image alignment into one wide field of view montage image. The image alignment into a montage requires efficient and accurate image registration. Since manual registration is demanding and disadvantageous, automatic registration is a beneficial improvement. We propose the first fully automated AO retinal image montage procedure. Here, we present three novel fully automated registration methods, which are based on two established image processing approaches. The first method utilizes scale invariant feature transform (SIFT) in combination with specific image preprocessing. The second method uses the phase correlation (PC) approach and the last method is a connection of PC and SIFT (PC-SIFT) algorithm. In total, 200 images acquired from the left and right eyes of 10 subjects were used for creating the wide field-of-view montage images and compared with manual montaging. The automated image montage was successfully achieved. Alignment accuracy evaluated by normalized mutual information metric showed that the PC-SIFT approach established the most accurate results, these are higher than manual montaging. Therefore, the AO montaging registration methods are able to achieve promising results in accuracy and time demand in comparison with manual montaging. Hence, the latter can be replaced by those fully automated procedures.

  • Název v anglickém jazyce

    Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images

  • Popis výsledku anglicky

    Adaptive optics (AO) flood illumination camera acquires retinal images with a limited field of view, which can be extended by image alignment into one wide field of view montage image. The image alignment into a montage requires efficient and accurate image registration. Since manual registration is demanding and disadvantageous, automatic registration is a beneficial improvement. We propose the first fully automated AO retinal image montage procedure. Here, we present three novel fully automated registration methods, which are based on two established image processing approaches. The first method utilizes scale invariant feature transform (SIFT) in combination with specific image preprocessing. The second method uses the phase correlation (PC) approach and the last method is a connection of PC and SIFT (PC-SIFT) algorithm. In total, 200 images acquired from the left and right eyes of 10 subjects were used for creating the wide field-of-view montage images and compared with manual montaging. The automated image montage was successfully achieved. Alignment accuracy evaluated by normalized mutual information metric showed that the PC-SIFT approach established the most accurate results, these are higher than manual montaging. Therefore, the AO montaging registration methods are able to achieve promising results in accuracy and time demand in comparison with manual montaging. Hence, the latter can be replaced by those fully automated procedures.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Annual Conference on Medical Image Understanding and Analysis

  • ISBN

    978-3-030-80432-9

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    503-513

  • Název nakladatele

    Springer, Cham.

  • Místo vydání

    Oxford, Great Britain

  • Místo konání akce

    Oxford

  • Datum konání akce

    12. 7. 2021

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku