Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141401" target="_blank" >RIV/00216305:26220/21:PU141401 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-80432-9_37" target="_blank" >https://doi.org/10.1007/978-3-030-80432-9_37</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-80432-9_37" target="_blank" >10.1007/978-3-030-80432-9_37</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images
Popis výsledku v původním jazyce
Adaptive optics (AO) flood illumination camera acquires retinal images with a limited field of view, which can be extended by image alignment into one wide field of view montage image. The image alignment into a montage requires efficient and accurate image registration. Since manual registration is demanding and disadvantageous, automatic registration is a beneficial improvement. We propose the first fully automated AO retinal image montage procedure. Here, we present three novel fully automated registration methods, which are based on two established image processing approaches. The first method utilizes scale invariant feature transform (SIFT) in combination with specific image preprocessing. The second method uses the phase correlation (PC) approach and the last method is a connection of PC and SIFT (PC-SIFT) algorithm. In total, 200 images acquired from the left and right eyes of 10 subjects were used for creating the wide field-of-view montage images and compared with manual montaging. The automated image montage was successfully achieved. Alignment accuracy evaluated by normalized mutual information metric showed that the PC-SIFT approach established the most accurate results, these are higher than manual montaging. Therefore, the AO montaging registration methods are able to achieve promising results in accuracy and time demand in comparison with manual montaging. Hence, the latter can be replaced by those fully automated procedures.
Název v anglickém jazyce
Robust Automatic Montaging of Adaptive Optics Flood Illumination Retinal Images
Popis výsledku anglicky
Adaptive optics (AO) flood illumination camera acquires retinal images with a limited field of view, which can be extended by image alignment into one wide field of view montage image. The image alignment into a montage requires efficient and accurate image registration. Since manual registration is demanding and disadvantageous, automatic registration is a beneficial improvement. We propose the first fully automated AO retinal image montage procedure. Here, we present three novel fully automated registration methods, which are based on two established image processing approaches. The first method utilizes scale invariant feature transform (SIFT) in combination with specific image preprocessing. The second method uses the phase correlation (PC) approach and the last method is a connection of PC and SIFT (PC-SIFT) algorithm. In total, 200 images acquired from the left and right eyes of 10 subjects were used for creating the wide field-of-view montage images and compared with manual montaging. The automated image montage was successfully achieved. Alignment accuracy evaluated by normalized mutual information metric showed that the PC-SIFT approach established the most accurate results, these are higher than manual montaging. Therefore, the AO montaging registration methods are able to achieve promising results in accuracy and time demand in comparison with manual montaging. Hence, the latter can be replaced by those fully automated procedures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Annual Conference on Medical Image Understanding and Analysis
ISBN
978-3-030-80432-9
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
503-513
Název nakladatele
Springer, Cham.
Místo vydání
Oxford, Great Britain
Místo konání akce
Oxford
Datum konání akce
12. 7. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—