Using Neural Network for Estimation of Li-ion Battery Depth of Discharge
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU142039" target="_blank" >RIV/00216305:26220/21:PU142039 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Neural Network for Estimation of Li-ion Battery Depth of Discharge
Popis výsledku v původním jazyce
This paper deals with the estimation of depth of discharge for Li-ion batteries. Estimation is based on the knowledge of discharging curves measured for discrete values of loading currents. The estimator of the depth of discharge is a form of feedforward neural network which is trained with the measured data of discharge curves.
Název v anglickém jazyce
Using Neural Network for Estimation of Li-ion Battery Depth of Discharge
Popis výsledku anglicky
This paper deals with the estimation of depth of discharge for Li-ion batteries. Estimation is based on the knowledge of discharging curves measured for discrete values of loading currents. The estimator of the depth of discharge is a form of feedforward neural network which is trained with the measured data of discharge curves.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1210" target="_blank" >LO1210: Energie v podmínkách udržitelného rozvoje (EN-PUR)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů