Text extraction from fuzzy inspection image based on adaptive immune factor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU147419" target="_blank" >RIV/00216305:26220/21:PU147419 - isvavai.cz</a>
Výsledek na webu
<a href="https://gdzjg.org.in/index.html" target="_blank" >https://gdzjg.org.in/index.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.16136/j.joel.2021.12.0290" target="_blank" >10.16136/j.joel.2021.12.0290</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Text extraction from fuzzy inspection image based on adaptive immune factor
Popis výsledku v původním jazyce
In order to achieve accurate and efficient extraction of text object from fuzzy inspection image. In this paper, aiming at various types of fuzzy inspection images, an adaptive immune algorithm is proposed based on the principle of artificial immune and the concept of immune factors combined with adaptive filtering algorithm. The new algorithm proposed in this paper first realizes adaptive filtering by changing the filter window dynamically, which not only preserves the details of the target text, but also filters out the noise. After that, we design different immune factors according to different types of fuzziness, so as to ensure the integrity and accuracy of the extracted text object to the greatest extent. The experimental results show that the proposed new algorithm is more effective when dealing with the same type of blurred inspection images, the true positive rate (TPR) date of the new algorithm is better than other traditional target extraction algorithms. Moreover, the false positive rate of the new algorithm is better than that of other false positive rate (FPR) data. Through the analysis of each evaluation index, it shows that the algorithm in this paper is feasible and accurate in the text extraction of fuzzy inspection image. © 2021, Science Press in China. All right reserved.
Název v anglickém jazyce
Text extraction from fuzzy inspection image based on adaptive immune factor
Popis výsledku anglicky
In order to achieve accurate and efficient extraction of text object from fuzzy inspection image. In this paper, aiming at various types of fuzzy inspection images, an adaptive immune algorithm is proposed based on the principle of artificial immune and the concept of immune factors combined with adaptive filtering algorithm. The new algorithm proposed in this paper first realizes adaptive filtering by changing the filter window dynamically, which not only preserves the details of the target text, but also filters out the noise. After that, we design different immune factors according to different types of fuzziness, so as to ensure the integrity and accuracy of the extracted text object to the greatest extent. The experimental results show that the proposed new algorithm is more effective when dealing with the same type of blurred inspection images, the true positive rate (TPR) date of the new algorithm is better than other traditional target extraction algorithms. Moreover, the false positive rate of the new algorithm is better than that of other false positive rate (FPR) data. Through the analysis of each evaluation index, it shows that the algorithm in this paper is feasible and accurate in the text extraction of fuzzy inspection image. © 2021, Science Press in China. All right reserved.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Guangdianzi Jiguang/Journal of Optoelectronics Laser
ISSN
1005-0086
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
7
Strana od-do
1293-1299
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85125178737