Security Modules for Securing Industrial Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU142636" target="_blank" >RIV/00216305:26220/22:PU142636 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9742069" target="_blank" >https://ieeexplore.ieee.org/document/9742069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CECIT53797.2021.00199" target="_blank" >10.1109/CECIT53797.2021.00199</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Security Modules for Securing Industrial Networks
Popis výsledku v původním jazyce
This article focuses on the incident detection techniques of communication in the Modbus/TCP protocol. Modbus/TCP does not implement authentication or communication encryption. Therefore, a Modbus Security Module was created allowing sniffing a specific network traffic and parsing particular information from the packets. This information is stored in a database using PostgreSQL on each master and slave station. Such a technique brings a new way to perform incident detection and to evaluate the transmitted packet's authenticity and integrity. Data taken from the database are used for an incident detection via a trained neural network. Using the presented approach, it is possible to detect all attacks targeting the slave station (originating from a non-master station). Using a neural network, it is possible to detect simulated attacks (originating from a master station) with an accuracy of 99.52 %. There is an additional authentication of individual stations using the created SSH connection between databases. For the proposal evaluation, IEEE dataset was used, where a significant increase of the neural network's accuracy was achieved using the proposed method.
Název v anglickém jazyce
Security Modules for Securing Industrial Networks
Popis výsledku anglicky
This article focuses on the incident detection techniques of communication in the Modbus/TCP protocol. Modbus/TCP does not implement authentication or communication encryption. Therefore, a Modbus Security Module was created allowing sniffing a specific network traffic and parsing particular information from the packets. This information is stored in a database using PostgreSQL on each master and slave station. Such a technique brings a new way to perform incident detection and to evaluate the transmitted packet's authenticity and integrity. Data taken from the database are used for an incident detection via a trained neural network. Using the presented approach, it is possible to detect all attacks targeting the slave station (originating from a non-master station). Using a neural network, it is possible to detect simulated attacks (originating from a master station) with an accuracy of 99.52 %. There is an additional authentication of individual stations using the created SSH connection between databases. For the proposal evaluation, IEEE dataset was used, where a significant increase of the neural network's accuracy was achieved using the proposed method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/FV40366" target="_blank" >FV40366: Datový monitoring pro zvýšení spolehlivosti procesů chytrých továren</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT 2021)
ISBN
978-1-6654-3757-8
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1125-1132
Název nakladatele
Institute of Electrical and Electronics Engineers Inc.
Místo vydání
neuveden
Místo konání akce
Sanya
Datum konání akce
27. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—