Incident Detection System for Industrial Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU142641" target="_blank" >RIV/00216305:26220/22:PU142641 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-04424-3_5" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-04424-3_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-04424-3_5" target="_blank" >10.1007/978-3-031-04424-3_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incident Detection System for Industrial Networks
Popis výsledku v původním jazyce
Modbus/TCP is one of the most used industrial protocol, but this protocol is unsecured and does not implement encryption of communication or authentication of the clients. Therefore, this paper is focused on the techniques of incident detection in Modbus/TCP communication, but it is possible to implement the proposed solution on different protocols. For this purpose, a Modbus Security Module was created. This module can sniff specific network traffic, parse particular information from the communication packets, and store this data into the database. The databases use PostgreSQL and are placed on each master and slave stations. The data stored in each database is used for incident detection. This method represents a new way of detecting incidents and cyber-attacks in the network. Using a neural network (with an accuracy of 99.52 %), machine learning (with an accuracy of 100 %), and database comparison, it is possible to detect all attacks targeting the slave station and detect simulated attacks originating from master or non-master station. For additional database security of each station, an SSH connection between the databases is used. For the evaluation of the proposed method, the IEEE dataset was used. This paper also presents a comparison of machine learning classifiers, where each classifier has adjusted parameters. A mutual comparison of machine learning classifiers (with or without memory parameter) was done.
Název v anglickém jazyce
Incident Detection System for Industrial Networks
Popis výsledku anglicky
Modbus/TCP is one of the most used industrial protocol, but this protocol is unsecured and does not implement encryption of communication or authentication of the clients. Therefore, this paper is focused on the techniques of incident detection in Modbus/TCP communication, but it is possible to implement the proposed solution on different protocols. For this purpose, a Modbus Security Module was created. This module can sniff specific network traffic, parse particular information from the communication packets, and store this data into the database. The databases use PostgreSQL and are placed on each master and slave stations. The data stored in each database is used for incident detection. This method represents a new way of detecting incidents and cyber-attacks in the network. Using a neural network (with an accuracy of 99.52 %), machine learning (with an accuracy of 100 %), and database comparison, it is possible to detect all attacks targeting the slave station and detect simulated attacks originating from master or non-master station. For additional database security of each station, an SSH connection between the databases is used. For the evaluation of the proposed method, the IEEE dataset was used. This paper also presents a comparison of machine learning classifiers, where each classifier has adjusted parameters. A mutual comparison of machine learning classifiers (with or without memory parameter) was done.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20192022132" target="_blank" >VI20192022132: Kybernetická aréna pro výzkum, testování a edukaci v oblasti kyberbezpečnosti</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Big Data Privacy and Security in Smart Cities
ISBN
978-3-031-04424-3
Počet stran výsledku
20
Strana od-do
83-102
Počet stran knihy
248
Název nakladatele
Springer
Místo vydání
Neuveden
Kód UT WoS kapitoly
—