Cagniard-DeHoop technique-based computation of retarded zero-thickness partial elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144300" target="_blank" >RIV/00216305:26220/22:PU144300 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0955799722000054" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0955799722000054</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enganabound.2022.01.005" target="_blank" >10.1016/j.enganabound.2022.01.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cagniard-DeHoop technique-based computation of retarded zero-thickness partial elements
Popis výsledku v původním jazyce
Integral-equation based methods for the solution of Maxwell's equations require that the physical system under analysis be meshed into elementary volumes and surfaces. This happens for the method of moments (MoM) and the partial element equivalent circuit (PEEC) method. Then, interaction integrals describing the electric and magnetic field coupling between these elementary regions need to be computed. This is typically done in the frequency domain by resorting to numerical quadrature schemes. In the time domain (TD), brute approximations are typically done leading to simplified schemes which lack the accuracy especially for electrically large problems when propagation delays are important. Such approximations are quite poor also for close elementary regions which are very strong and, thus very important to the overall solution. Hence, in the perspective of developing an accurate time domain solver, it is desirable to have time domain analytical or quasi-analytical forms of the interaction integrals. In this work, we shall derive quasi-closed-form expressions for retarded coefficients as they appear in the partial element equivalent circuit (PEEC) method. To this aim, the Cagniard-DeHoop (CdH) technique exploiting pertinent integration path deformation in the complex-domain leads to semi-analytical forms. The analysis is carried out for a pair of parallel (but non coplanar) and orthogonal fundamental surface elements as they occur in the modeling of the electric field coupling due to free or bound charges on the surface of conductors and dielectrics. The same results hold also for the magnetic field coupling assuming that currents flow within thin conductors. The accuracy of the proposed approach is tested for representative parallel and orthogonal patches.
Název v anglickém jazyce
Cagniard-DeHoop technique-based computation of retarded zero-thickness partial elements
Popis výsledku anglicky
Integral-equation based methods for the solution of Maxwell's equations require that the physical system under analysis be meshed into elementary volumes and surfaces. This happens for the method of moments (MoM) and the partial element equivalent circuit (PEEC) method. Then, interaction integrals describing the electric and magnetic field coupling between these elementary regions need to be computed. This is typically done in the frequency domain by resorting to numerical quadrature schemes. In the time domain (TD), brute approximations are typically done leading to simplified schemes which lack the accuracy especially for electrically large problems when propagation delays are important. Such approximations are quite poor also for close elementary regions which are very strong and, thus very important to the overall solution. Hence, in the perspective of developing an accurate time domain solver, it is desirable to have time domain analytical or quasi-analytical forms of the interaction integrals. In this work, we shall derive quasi-closed-form expressions for retarded coefficients as they appear in the partial element equivalent circuit (PEEC) method. To this aim, the Cagniard-DeHoop (CdH) technique exploiting pertinent integration path deformation in the complex-domain leads to semi-analytical forms. The analysis is carried out for a pair of parallel (but non coplanar) and orthogonal fundamental surface elements as they occur in the modeling of the electric field coupling due to free or bound charges on the surface of conductors and dielectrics. The same results hold also for the magnetic field coupling assuming that currents flow within thin conductors. The accuracy of the proposed approach is tested for representative parallel and orthogonal patches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01090S" target="_blank" >GA20-01090S: Interakce pulsního EM pole s tenkovrstvými strukturami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
ISSN
0955-7997
e-ISSN
1873-197X
Svazek periodika
137
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
56-64
Kód UT WoS článku
000773500400002
EID výsledku v databázi Scopus
2-s2.0-85123723984