Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cagniard-DeHoop technique-based computation of retarded zero-thickness partial elements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144300" target="_blank" >RIV/00216305:26220/22:PU144300 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0955799722000054" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0955799722000054</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enganabound.2022.01.005" target="_blank" >10.1016/j.enganabound.2022.01.005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cagniard-DeHoop technique-based computation of retarded zero-thickness partial elements

  • Popis výsledku v původním jazyce

    Integral-equation based methods for the solution of Maxwell's equations require that the physical system under analysis be meshed into elementary volumes and surfaces. This happens for the method of moments (MoM) and the partial element equivalent circuit (PEEC) method. Then, interaction integrals describing the electric and magnetic field coupling between these elementary regions need to be computed. This is typically done in the frequency domain by resorting to numerical quadrature schemes. In the time domain (TD), brute approximations are typically done leading to simplified schemes which lack the accuracy especially for electrically large problems when propagation delays are important. Such approximations are quite poor also for close elementary regions which are very strong and, thus very important to the overall solution. Hence, in the perspective of developing an accurate time domain solver, it is desirable to have time domain analytical or quasi-analytical forms of the interaction integrals. In this work, we shall derive quasi-closed-form expressions for retarded coefficients as they appear in the partial element equivalent circuit (PEEC) method. To this aim, the Cagniard-DeHoop (CdH) technique exploiting pertinent integration path deformation in the complex-domain leads to semi-analytical forms. The analysis is carried out for a pair of parallel (but non coplanar) and orthogonal fundamental surface elements as they occur in the modeling of the electric field coupling due to free or bound charges on the surface of conductors and dielectrics. The same results hold also for the magnetic field coupling assuming that currents flow within thin conductors. The accuracy of the proposed approach is tested for representative parallel and orthogonal patches.

  • Název v anglickém jazyce

    Cagniard-DeHoop technique-based computation of retarded zero-thickness partial elements

  • Popis výsledku anglicky

    Integral-equation based methods for the solution of Maxwell's equations require that the physical system under analysis be meshed into elementary volumes and surfaces. This happens for the method of moments (MoM) and the partial element equivalent circuit (PEEC) method. Then, interaction integrals describing the electric and magnetic field coupling between these elementary regions need to be computed. This is typically done in the frequency domain by resorting to numerical quadrature schemes. In the time domain (TD), brute approximations are typically done leading to simplified schemes which lack the accuracy especially for electrically large problems when propagation delays are important. Such approximations are quite poor also for close elementary regions which are very strong and, thus very important to the overall solution. Hence, in the perspective of developing an accurate time domain solver, it is desirable to have time domain analytical or quasi-analytical forms of the interaction integrals. In this work, we shall derive quasi-closed-form expressions for retarded coefficients as they appear in the partial element equivalent circuit (PEEC) method. To this aim, the Cagniard-DeHoop (CdH) technique exploiting pertinent integration path deformation in the complex-domain leads to semi-analytical forms. The analysis is carried out for a pair of parallel (but non coplanar) and orthogonal fundamental surface elements as they occur in the modeling of the electric field coupling due to free or bound charges on the surface of conductors and dielectrics. The same results hold also for the magnetic field coupling assuming that currents flow within thin conductors. The accuracy of the proposed approach is tested for representative parallel and orthogonal patches.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-01090S" target="_blank" >GA20-01090S: Interakce pulsního EM pole s tenkovrstvými strukturami</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS

  • ISSN

    0955-7997

  • e-ISSN

    1873-197X

  • Svazek periodika

    137

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

    56-64

  • Kód UT WoS článku

    000773500400002

  • EID výsledku v databázi Scopus

    2-s2.0-85123723984