Partial-inductance retarded partial coefficients: Their exact computation based on the Cagniard-DeHoop technique
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU147798" target="_blank" >RIV/00216305:26220/23:PU147798 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0955799723000097" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0955799723000097</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enganabound.2023.01.008" target="_blank" >10.1016/j.enganabound.2023.01.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Partial-inductance retarded partial coefficients: Their exact computation based on the Cagniard-DeHoop technique
Popis výsledku v původním jazyce
The Partial Element Equivalent Circuit (PEEC) method is a well recognized integral-equation (IE) technique to solve Maxwell's equations. Similarly to the method of moments (MoM), the electromagnetic (EM) interactions between currents and between charges are described in terms of integrals. In contrast to the standard MoM, the PEEC method keeps the electric and magnetic coupling phenomena separate, which leads to different interaction integrals to be computed. These integrals admit simplified solutions for the case of the static free-space Green's function and orthogonal geometries but their applicability is limited to electrically small problems only. When the full-wave free-space Green's function is considered, the integrals are typically computed in the frequency domain (FD) by resorting to Gaussian quadrature schemes. The accuracy and efficiency of such schemes is a delicate issue. Therefore, recent works have investigated the possibility of applying the Cagniard-DeHoop (CdH) technique to calculate the interaction integrals for zero-thickness elementary domains. In this paper, we close the loop and shall apply the CdH technique to calculate the partial-inductance between two elementary bricks as prescribed by the PEEC technique exactly in the time domain (TD). The analytical approach is demonstrated on the interaction between two bricks as it occurs in the modeling of the magnetic field coupling between volumetric currents. The accuracy of the proposed approach is (successfully) tested for two representative cases.
Název v anglickém jazyce
Partial-inductance retarded partial coefficients: Their exact computation based on the Cagniard-DeHoop technique
Popis výsledku anglicky
The Partial Element Equivalent Circuit (PEEC) method is a well recognized integral-equation (IE) technique to solve Maxwell's equations. Similarly to the method of moments (MoM), the electromagnetic (EM) interactions between currents and between charges are described in terms of integrals. In contrast to the standard MoM, the PEEC method keeps the electric and magnetic coupling phenomena separate, which leads to different interaction integrals to be computed. These integrals admit simplified solutions for the case of the static free-space Green's function and orthogonal geometries but their applicability is limited to electrically small problems only. When the full-wave free-space Green's function is considered, the integrals are typically computed in the frequency domain (FD) by resorting to Gaussian quadrature schemes. The accuracy and efficiency of such schemes is a delicate issue. Therefore, recent works have investigated the possibility of applying the Cagniard-DeHoop (CdH) technique to calculate the interaction integrals for zero-thickness elementary domains. In this paper, we close the loop and shall apply the CdH technique to calculate the partial-inductance between two elementary bricks as prescribed by the PEEC technique exactly in the time domain (TD). The analytical approach is demonstrated on the interaction between two bricks as it occurs in the modeling of the magnetic field coupling between volumetric currents. The accuracy of the proposed approach is (successfully) tested for two representative cases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01090S" target="_blank" >GA20-01090S: Interakce pulsního EM pole s tenkovrstvými strukturami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
ISSN
0955-7997
e-ISSN
1873-197X
Svazek periodika
149
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
86-91
Kód UT WoS článku
000920928200001
EID výsledku v databázi Scopus
2-s2.0-85146721214