Parallel Genetic Algorithms' Implementation Using a Scalable Concurrent Operation in Python
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144347" target="_blank" >RIV/00216305:26220/22:PU144347 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1424-8220/22/6/2389" target="_blank" >https://www.mdpi.com/1424-8220/22/6/2389</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22062389" target="_blank" >10.3390/s22062389</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parallel Genetic Algorithms' Implementation Using a Scalable Concurrent Operation in Python
Popis výsledku v původním jazyce
This paper presents an implementation of the parallelization of genetic algorithms. Three models of parallelized genetic algorithms are presented, namely the Master-Slave genetic algorithm, the Coarse-Grained genetic algorithm, and the Fine-Grained genetic algorithm. Furthermore, these models are compared with the basic serial genetic algorithm model. Four modules, Multiprocessing, Celery, PyCSP, and Scalable Concurrent Operation in Python, were investigated among the many parallelization options in Python. The Scalable Concurrent Operation in Python was selected as the most favorable option, so the models were implemented using the Python programming language, RabbitMQ, and SCOOP. Based on the implementation results and testing performed, a comparison of the hardware utilization of each deployed model is provided. The results' implementation using SCOOP was investigated from three aspects. The first aspect was the parallelization and integration of the SCOOP module into the resulting Python module. The second was the communication within the genetic algorithm topology. The third aspect was the performance of the parallel genetic algorithm model depending on the hardware.
Název v anglickém jazyce
Parallel Genetic Algorithms' Implementation Using a Scalable Concurrent Operation in Python
Popis výsledku anglicky
This paper presents an implementation of the parallelization of genetic algorithms. Three models of parallelized genetic algorithms are presented, namely the Master-Slave genetic algorithm, the Coarse-Grained genetic algorithm, and the Fine-Grained genetic algorithm. Furthermore, these models are compared with the basic serial genetic algorithm model. Four modules, Multiprocessing, Celery, PyCSP, and Scalable Concurrent Operation in Python, were investigated among the many parallelization options in Python. The Scalable Concurrent Operation in Python was selected as the most favorable option, so the models were implemented using the Python programming language, RabbitMQ, and SCOOP. Based on the implementation results and testing performed, a comparison of the hardware utilization of each deployed model is provided. The results' implementation using SCOOP was investigated from three aspects. The first aspect was the parallelization and integration of the SCOOP module into the resulting Python module. The second was the communication within the genetic algorithm topology. The third aspect was the performance of the parallel genetic algorithm model depending on the hardware.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20192022135" target="_blank" >VI20192022135: Hloubková hardwarová detekce síťového provozu pasivních optických sítí nové generace v kritických infrastrukturách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SENSORS
ISSN
1424-8220
e-ISSN
1424-3210
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000774393200001
EID výsledku v databázi Scopus
2-s2.0-85126899544