Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144351" target="_blank" >RIV/00216305:26220/22:PU144351 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.techscience.com/cmc/v72n2/47234" target="_blank" >https://www.techscience.com/cmc/v72n2/47234</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.32604/cmc.2022.026353" target="_blank" >10.32604/cmc.2022.026353</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems
Popis výsledku v původním jazyce
The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV) system and highlighted along with a brief overview on existing fault detection methodology. Based on the drawback a data-driven machine learning approach has been used for the identification of fault and indicating the maintenance unit regarding the operation and maintenance requirement. Further, the system was tested with a 4 kWp grid-connected PV system, and a decision tree-based algorithm was developed for the identification of a fault. The results identified 94.7% training accuracy and 14000 observations/sec prediction speed for the trained classifier and improved the reliability of fault detection nature of the grid-connected PV operation.
Název v anglickém jazyce
Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems
Popis výsledku anglicky
The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV) system and highlighted along with a brief overview on existing fault detection methodology. Based on the drawback a data-driven machine learning approach has been used for the identification of fault and indicating the maintenance unit regarding the operation and maintenance requirement. Further, the system was tested with a 4 kWp grid-connected PV system, and a decision tree-based algorithm was developed for the identification of a fault. The results identified 94.7% training accuracy and 14000 observations/sec prediction speed for the trained classifier and improved the reliability of fault detection nature of the grid-connected PV operation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CMC-Computers Materials & Continua
ISSN
1546-2218
e-ISSN
1546-2226
Svazek periodika
72
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
3999-4017
Kód UT WoS článku
000779567700035
EID výsledku v databázi Scopus
—