Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144351" target="_blank" >RIV/00216305:26220/22:PU144351 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.techscience.com/cmc/v72n2/47234" target="_blank" >https://www.techscience.com/cmc/v72n2/47234</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.32604/cmc.2022.026353" target="_blank" >10.32604/cmc.2022.026353</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems

  • Popis výsledku v původním jazyce

    The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV) system and highlighted along with a brief overview on existing fault detection methodology. Based on the drawback a data-driven machine learning approach has been used for the identification of fault and indicating the maintenance unit regarding the operation and maintenance requirement. Further, the system was tested with a 4 kWp grid-connected PV system, and a decision tree-based algorithm was developed for the identification of a fault. The results identified 94.7% training accuracy and 14000 observations/sec prediction speed for the trained classifier and improved the reliability of fault detection nature of the grid-connected PV operation.

  • Název v anglickém jazyce

    Condition Monitoring and Maintenance Management with Grid-Connected Renewable Energy Systems

  • Popis výsledku anglicky

    The shift towards the renewable energy market for carbon-neutral power generation has encouraged different governments to come up with a plan of action. But with the endorsement of renewable energy for harsh environmental conditions like sand dust and snow, monitoring and maintenance are a few of the prime concerns. These problems were addressed widely in the literature, but most of the research has drawbacks due to long detection time, and high misclassification error. Hence to overcome these drawbacks, and to develop an accurate monitoring approach, this paper is motivated toward the understanding of primary failure concerning a grid-connected photovoltaic (PV) system and highlighted along with a brief overview on existing fault detection methodology. Based on the drawback a data-driven machine learning approach has been used for the identification of fault and indicating the maintenance unit regarding the operation and maintenance requirement. Further, the system was tested with a 4 kWp grid-connected PV system, and a decision tree-based algorithm was developed for the identification of a fault. The results identified 94.7% training accuracy and 14000 observations/sec prediction speed for the trained classifier and improved the reliability of fault detection nature of the grid-connected PV operation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CMC-Computers Materials & Continua

  • ISSN

    1546-2218

  • e-ISSN

    1546-2226

  • Svazek periodika

    72

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    3999-4017

  • Kód UT WoS článku

    000779567700035

  • EID výsledku v databázi Scopus