Online Learning-based Islanding Detection Scheme for Grid-Connected Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU145957" target="_blank" >RIV/00216305:26220/22:PU145957 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9907714" target="_blank" >https://ieeexplore.ieee.org/document/9907714</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online Learning-based Islanding Detection Scheme for Grid-Connected Systems
Popis výsledku v původním jazyce
Data aggregation in smart grids is a key component for emergency responses during abnormalities in the grid. To efficiently utilize the aggregated data, and achieve fast identification of these abnormalities, this paper develops an online islanding detection approach. The development of the technique is realized with an online learning algorithm implemented using the large-scale support vector machine (LaSVM). The algorithm adopts a classification problem for islanding detection in grid-connected systems by considering a set of independent variables and unknown variables. The independent variables are related to the known islanding events in the grid-connected system, and the unknown variables are related to the dynamics of the grid operating in real-time. The proposed approach solves this problem by training the known and unknown variables and identifying new instances through sequential minimal optimization. The training and validation results provided indicate 99.8 % accuracy for islanding detection under standard operating conditions of the grid-connected system.
Název v anglickém jazyce
Online Learning-based Islanding Detection Scheme for Grid-Connected Systems
Popis výsledku anglicky
Data aggregation in smart grids is a key component for emergency responses during abnormalities in the grid. To efficiently utilize the aggregated data, and achieve fast identification of these abnormalities, this paper develops an online islanding detection approach. The development of the technique is realized with an online learning algorithm implemented using the large-scale support vector machine (LaSVM). The algorithm adopts a classification problem for islanding detection in grid-connected systems by considering a set of independent variables and unknown variables. The independent variables are related to the known islanding events in the grid-connected system, and the unknown variables are related to the dynamics of the grid operating in real-time. The proposed approach solves this problem by training the known and unknown variables and identifying new instances through sequential minimal optimization. The training and validation results provided indicate 99.8 % accuracy for islanding detection under standard operating conditions of the grid-connected system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe)
ISBN
978-9-0758-1539-9
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1-10
Název nakladatele
Neuveden
Místo vydání
neuveden
Místo konání akce
Hannover
Datum konání akce
5. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—