Monitoring of Synchronization Failure for Power Electronics Converters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146342" target="_blank" >RIV/00216305:26220/22:PU146342 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10067639" target="_blank" >https://ieeexplore.ieee.org/document/10067639</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICSRS56243.2022.10067639" target="_blank" >10.1109/ICSRS56243.2022.10067639</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monitoring of Synchronization Failure for Power Electronics Converters
Popis výsledku v původním jazyce
The recent developments in the grid integration of power electronics converters have raised some serious concerns related to their synchronization. These concerns when unattended resulted in unintentional islanding of the distributed generation (DG) units and triggered the cyclic behavior of system disconnection. Hence, to overcome these drawbacks, timely detection of these synchronization failure with high accuracy is necessary. In this paper, the applicability of an advanced recurrent neural network that allows persistent information exchange is analyzed for distinguishing between the normal operation and synchronization failure in a converter network. To achieve this a long-short term memory (LSTM) autoencoder is designed as a classification approach and employed with the power converters operating in a network. The LSTM offers advantages with automated feature extraction and ranking which are the major aspects for improving the time detection of disturbances in a system with high accuracy. To develop this approach, a three-phase grid feeder integrating a three-phase rectifier with a three-phase inverter and a single-phase inverter is designed. Measurements and normal operation and synchronization failure are analyzed to train the algorithm. The trained algorithm is identified to achieve 99.49% training accuracy and 100% testing accuracy with a detection time of 0.2 milliseconds.
Název v anglickém jazyce
Monitoring of Synchronization Failure for Power Electronics Converters
Popis výsledku anglicky
The recent developments in the grid integration of power electronics converters have raised some serious concerns related to their synchronization. These concerns when unattended resulted in unintentional islanding of the distributed generation (DG) units and triggered the cyclic behavior of system disconnection. Hence, to overcome these drawbacks, timely detection of these synchronization failure with high accuracy is necessary. In this paper, the applicability of an advanced recurrent neural network that allows persistent information exchange is analyzed for distinguishing between the normal operation and synchronization failure in a converter network. To achieve this a long-short term memory (LSTM) autoencoder is designed as a classification approach and employed with the power converters operating in a network. The LSTM offers advantages with automated feature extraction and ranking which are the major aspects for improving the time detection of disturbances in a system with high accuracy. To develop this approach, a three-phase grid feeder integrating a three-phase rectifier with a three-phase inverter and a single-phase inverter is designed. Measurements and normal operation and synchronization failure are analyzed to train the algorithm. The trained algorithm is identified to achieve 99.49% training accuracy and 100% testing accuracy with a detection time of 0.2 milliseconds.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/CK02000099" target="_blank" >CK02000099: Pilotní projekt napájení trakčního vedení měniči AC/AC</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 6th International Conference on System Reliability and Safety (ICSRS)
ISBN
978-1-6654-7092-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
26-31
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Venice
Datum konání akce
23. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000981836500004