Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Failure Mode Effect Classification for Power Electronics Converters Operating in a Grid-Connected System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146863" target="_blank" >RIV/00216305:26220/22:PU146863 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/abstract/document/9924178" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9924178</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JSYST.2022.3213071" target="_blank" >10.1109/JSYST.2022.3213071</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Failure Mode Effect Classification for Power Electronics Converters Operating in a Grid-Connected System

  • Popis výsledku v původním jazyce

    Power electronic interfaces are the key aspects for achieving efficient grid integration for various distributed generation applications. As these interfaces continue to increase, their failure will result in major power losses and unstable operation of the electrical network. This article proposes a failure mode effect classification (FMEC) approach for localizing the faults in power electronic converters. The approach is developed with model-driven fault detection for identifying the fault signatures and data-driven fault identification for classifying the fault. This aims at identifying the fault effect on inputs, components, and sensors without compromising with the power stage of the converter. Furthermore, numerical simulations are carried out with a three-phase converter to acquire the fault signature library, and k-nearest neighbor approach is used to train the datasets. The fault signature library handles the information related to filter residuals obtained from the fault magnitude of each fault scenario. The proposed approach is validated through the experimental analysis of a real-time operation of a three-phase converter. The classifier training showed 96.5% accuracy, testing accuracy is 95.75%, and the fault detection time is 0.04 s. The testing results of the FMEC accurately identified various faults under varying load conditions without compromising the dynamic performance of the algorithm.

  • Název v anglickém jazyce

    Failure Mode Effect Classification for Power Electronics Converters Operating in a Grid-Connected System

  • Popis výsledku anglicky

    Power electronic interfaces are the key aspects for achieving efficient grid integration for various distributed generation applications. As these interfaces continue to increase, their failure will result in major power losses and unstable operation of the electrical network. This article proposes a failure mode effect classification (FMEC) approach for localizing the faults in power electronic converters. The approach is developed with model-driven fault detection for identifying the fault signatures and data-driven fault identification for classifying the fault. This aims at identifying the fault effect on inputs, components, and sensors without compromising with the power stage of the converter. Furthermore, numerical simulations are carried out with a three-phase converter to acquire the fault signature library, and k-nearest neighbor approach is used to train the datasets. The fault signature library handles the information related to filter residuals obtained from the fault magnitude of each fault scenario. The proposed approach is validated through the experimental analysis of a real-time operation of a three-phase converter. The classifier training showed 96.5% accuracy, testing accuracy is 95.75%, and the fault detection time is 0.04 s. The testing results of the FMEC accurately identified various faults under varying load conditions without compromising the dynamic performance of the algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Systems Journal

  • ISSN

    1932-8184

  • e-ISSN

    1937-9234

  • Svazek periodika

    17

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    3138-3149

  • Kód UT WoS článku

    001006039000130

  • EID výsledku v databázi Scopus

    2-s2.0-85140712195