Failure Mode Effect Classification for Power Electronics Converters Operating in a Grid-Connected System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146863" target="_blank" >RIV/00216305:26220/22:PU146863 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/9924178" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9924178</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSYST.2022.3213071" target="_blank" >10.1109/JSYST.2022.3213071</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Failure Mode Effect Classification for Power Electronics Converters Operating in a Grid-Connected System
Popis výsledku v původním jazyce
Power electronic interfaces are the key aspects for achieving efficient grid integration for various distributed generation applications. As these interfaces continue to increase, their failure will result in major power losses and unstable operation of the electrical network. This article proposes a failure mode effect classification (FMEC) approach for localizing the faults in power electronic converters. The approach is developed with model-driven fault detection for identifying the fault signatures and data-driven fault identification for classifying the fault. This aims at identifying the fault effect on inputs, components, and sensors without compromising with the power stage of the converter. Furthermore, numerical simulations are carried out with a three-phase converter to acquire the fault signature library, and k-nearest neighbor approach is used to train the datasets. The fault signature library handles the information related to filter residuals obtained from the fault magnitude of each fault scenario. The proposed approach is validated through the experimental analysis of a real-time operation of a three-phase converter. The classifier training showed 96.5% accuracy, testing accuracy is 95.75%, and the fault detection time is 0.04 s. The testing results of the FMEC accurately identified various faults under varying load conditions without compromising the dynamic performance of the algorithm.
Název v anglickém jazyce
Failure Mode Effect Classification for Power Electronics Converters Operating in a Grid-Connected System
Popis výsledku anglicky
Power electronic interfaces are the key aspects for achieving efficient grid integration for various distributed generation applications. As these interfaces continue to increase, their failure will result in major power losses and unstable operation of the electrical network. This article proposes a failure mode effect classification (FMEC) approach for localizing the faults in power electronic converters. The approach is developed with model-driven fault detection for identifying the fault signatures and data-driven fault identification for classifying the fault. This aims at identifying the fault effect on inputs, components, and sensors without compromising with the power stage of the converter. Furthermore, numerical simulations are carried out with a three-phase converter to acquire the fault signature library, and k-nearest neighbor approach is used to train the datasets. The fault signature library handles the information related to filter residuals obtained from the fault magnitude of each fault scenario. The proposed approach is validated through the experimental analysis of a real-time operation of a three-phase converter. The classifier training showed 96.5% accuracy, testing accuracy is 95.75%, and the fault detection time is 0.04 s. The testing results of the FMEC accurately identified various faults under varying load conditions without compromising the dynamic performance of the algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Systems Journal
ISSN
1932-8184
e-ISSN
1937-9234
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
3138-3149
Kód UT WoS článku
001006039000130
EID výsledku v databázi Scopus
2-s2.0-85140712195