Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Analysis of Car Drivers’ Behaviour and Driving Style

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144378" target="_blank" >RIV/00216305:26220/22:PU144378 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Analysis of Car Drivers’ Behaviour and Driving Style

  • Popis výsledku v původním jazyce

    Driving security remains one of the important issues. Nowadays, various assistance systems are implemented, such as the systems for analysis of control of a car by its driver. To understand the performance of the driver’s control, a program was created to obtain valuable data and relevant characteristics. To obtain the data, we used an internally designed, laboratory-made vehicle driving simulator developed by D. Michalík [2]. Driver data were obtained using a proprietary vehicle driving simulator, and these were evaluated in the MATLAB environment via integral criteria and other calculated parameters, such as reaction delay. Features thus obtained were used as a training set for the machine learning, using LDA and QDA methods (linear and quadratic discriminant analysis). These methods reveal information concerning the importance of features for the task of driver’s identity prediction based solely on the driving actions.

  • Název v anglickém jazyce

    Analysis of Car Drivers’ Behaviour and Driving Style

  • Popis výsledku anglicky

    Driving security remains one of the important issues. Nowadays, various assistance systems are implemented, such as the systems for analysis of control of a car by its driver. To understand the performance of the driver’s control, a program was created to obtain valuable data and relevant characteristics. To obtain the data, we used an internally designed, laboratory-made vehicle driving simulator developed by D. Michalík [2]. Driver data were obtained using a proprietary vehicle driving simulator, and these were evaluated in the MATLAB environment via integral criteria and other calculated parameters, such as reaction delay. Features thus obtained were used as a training set for the machine learning, using LDA and QDA methods (linear and quadratic discriminant analysis). These methods reveal information concerning the importance of features for the task of driver’s identity prediction based solely on the driving actions.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů