Is It Possible to Distinguish COVID-19 Cases and Influenza with Wearable Devices? Analysis with Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144388" target="_blank" >RIV/00216305:26220/22:PU144388 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.jait.us/index.php?m=content&c=index&a=show&catid=217&id=1225" target="_blank" >http://www.jait.us/index.php?m=content&c=index&a=show&catid=217&id=1225</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12720/jait.13.3.265-270" target="_blank" >10.12720/jait.13.3.265-270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Is It Possible to Distinguish COVID-19 Cases and Influenza with Wearable Devices? Analysis with Machine Learning
Popis výsledku v původním jazyce
The COVID-19 situation is enforcing the creation of the diagnosis and supporting methods for early detection, which could serve as screening tools. In this paper, we introduced the methodologies based on wearable devices and machine learning, which distinguishes between COVID-19 disease and two types of Influenza. We checked the results of binary classification for various scenarios and multiclass classification. The results were evaluated separately for the cases before the pandemic and in the middle of the pandemic. In the middle of the pandemic, the best classification accuracy was achieved when distinguishing between COVID-19 and Influenza cases with k-NN (the balanced accuracy was equal to 73%). The highest sensitivity was achieved for Logistic Regression - 61%. The successful distinction between Influenza types was achieved in 80 % for XGBoost and Decision Tree. Additionally, the balanced accuracy for multiclass classification was equal to 69 % for k-NN.
Název v anglickém jazyce
Is It Possible to Distinguish COVID-19 Cases and Influenza with Wearable Devices? Analysis with Machine Learning
Popis výsledku anglicky
The COVID-19 situation is enforcing the creation of the diagnosis and supporting methods for early detection, which could serve as screening tools. In this paper, we introduced the methodologies based on wearable devices and machine learning, which distinguishes between COVID-19 disease and two types of Influenza. We checked the results of binary classification for various scenarios and multiclass classification. The results were evaluated separately for the cases before the pandemic and in the middle of the pandemic. In the middle of the pandemic, the best classification accuracy was achieved when distinguishing between COVID-19 and Influenza cases with k-NN (the balanced accuracy was equal to 73%). The highest sensitivity was achieved for Logistic Regression - 61%. The successful distinction between Influenza types was achieved in 80 % for XGBoost and Decision Tree. Additionally, the balanced accuracy for multiclass classification was equal to 69 % for k-NN.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/VI04000039" target="_blank" >VI04000039: Systém včasného záchytu infekce COVID-19 pro bezpečnost ohrožených skupin obyvatelstva s využitím umělé inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Advances in Information Technology
ISSN
1798-2340
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
AU - Austrálie
Počet stran výsledku
6
Strana od-do
265-270
Kód UT WoS článku
000884923300008
EID výsledku v databázi Scopus
2-s2.0-85130704741