Wearable Analytics and Early Diagnostic of COVID-19 Based on Two Cohorts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146274" target="_blank" >RIV/00216305:26220/22:PU146274 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9943460" target="_blank" >https://ieeexplore.ieee.org/document/9943460</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUMT57764.2022.9943460" target="_blank" >10.1109/ICUMT57764.2022.9943460</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wearable Analytics and Early Diagnostic of COVID-19 Based on Two Cohorts
Popis výsledku v původním jazyce
The outbreak of the COVID-19 pandemic forced a need to create screening tests to diagnose the disease. To answer this challenge, this paper introduces the support methodology for COVID-19 early detection based on wearable and machine learning likewise on two various cohorts. We compare the level of detection of the COVID-19 disease, Influenza, and Healthy Control (HC) thanks to the usage of machine learning classifiers likewise changes in heart rate and daily activity. The features obtained as the parameters of the ratio of heart rate to the variable of the number of steps proved to have the highest statistical importance. The COVID-19 cases versus HC were possible to be distinguished with 0.73 accuracy by the XGBoost algorithm, whereas COVID-19 cases, Influenza vs. HC were able to be differentiated on similar level of accuracy: in 0.72 by Support Vector Machine. The multiclass classification between the cases achieved a 0.57 F1-score for three classes by XGBoost. For early diagnosis, this solution could serve as an extra test for clinicians during the pandemic, and the result shows which metric could be useful for creating the machine learning model.
Název v anglickém jazyce
Wearable Analytics and Early Diagnostic of COVID-19 Based on Two Cohorts
Popis výsledku anglicky
The outbreak of the COVID-19 pandemic forced a need to create screening tests to diagnose the disease. To answer this challenge, this paper introduces the support methodology for COVID-19 early detection based on wearable and machine learning likewise on two various cohorts. We compare the level of detection of the COVID-19 disease, Influenza, and Healthy Control (HC) thanks to the usage of machine learning classifiers likewise changes in heart rate and daily activity. The features obtained as the parameters of the ratio of heart rate to the variable of the number of steps proved to have the highest statistical importance. The COVID-19 cases versus HC were possible to be distinguished with 0.73 accuracy by the XGBoost algorithm, whereas COVID-19 cases, Influenza vs. HC were able to be differentiated on similar level of accuracy: in 0.72 by Support Vector Machine. The multiclass classification between the cases achieved a 0.57 F1-score for three classes by XGBoost. For early diagnosis, this solution could serve as an extra test for clinicians during the pandemic, and the result shows which metric could be useful for creating the machine learning model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshop (ICUMT)
ISBN
979-8-3503-9866-3
ISSN
2157-023X
e-ISSN
—
Počet stran výsledku
8
Strana od-do
56-63
Název nakladatele
IEEE
Místo vydání
Valencia, Spain
Místo konání akce
Valencia, Spain
Datum konání akce
11. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—