COVID-19 detection from chest X-ray images using Detectron2 and Faster R-CNN
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F23%3A63570318" target="_blank" >RIV/70883521:28140/23:63570318 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21438-7_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21438-7_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21438-7_3" target="_blank" >10.1007/978-3-031-21438-7_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COVID-19 detection from chest X-ray images using Detectron2 and Faster R-CNN
Popis výsledku v původním jazyce
The COVID-19 outbreak has been causing immense damage to global health and has put the world under tremendous pressure since early 2020. The World Health Organization (WHO) has declared in March 2020 the novel coronavirus outbreak as a global pandemic. Testing of infected patients and early recognition of positive cases is considered a critical step in the fight against COVID-19 to avoid further spreading of this epidemic. As there are no fast and accurate tools available till now for the detection of COVID-19 positive cases, the need for supporting diagnostic tools has increased. Any technological method that can provide rapid and accurate detection will be very useful to medical professionals. However, there are several methods to detect COVID-19 positive cases that are typically performed based on chest X-ray images that contain relevant information about the COVID-19 virus. This paper goal is to introduce a Detectron2 and Faster R-CNN to diagnose COVID-19 automatically from X-ray images. In addition, this study could support non-radiologists with better localization of the disease by visual bounding box. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
COVID-19 detection from chest X-ray images using Detectron2 and Faster R-CNN
Popis výsledku anglicky
The COVID-19 outbreak has been causing immense damage to global health and has put the world under tremendous pressure since early 2020. The World Health Organization (WHO) has declared in March 2020 the novel coronavirus outbreak as a global pandemic. Testing of infected patients and early recognition of positive cases is considered a critical step in the fight against COVID-19 to avoid further spreading of this epidemic. As there are no fast and accurate tools available till now for the detection of COVID-19 positive cases, the need for supporting diagnostic tools has increased. Any technological method that can provide rapid and accurate detection will be very useful to medical professionals. However, there are several methods to detect COVID-19 positive cases that are typically performed based on chest X-ray images that contain relevant information about the COVID-19 virus. This paper goal is to introduce a Detectron2 and Faster R-CNN to diagnose COVID-19 automatically from X-ray images. In addition, this study could support non-radiologists with better localization of the disease by visual bounding box. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and System (Volume 597 LNNS)
ISBN
978-3-031-21437-0
ISSN
2367-3370
e-ISSN
2367-3389
Počet stran výsledku
17
Strana od-do
37-53
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
on-line
Datum konání akce
10. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000992418500003