COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS DISEASE (COVID-19)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00343005" target="_blank" >RIV/68407700:21220/20:00343005 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0218348X20501145" target="_blank" >https://doi.org/10.1142/S0218348X20501145</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218348X20501145" target="_blank" >10.1142/S0218348X20501145</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS DISEASE (COVID-19)
Popis výsledku v původním jazyce
COVID-19 is a pandemic disease, which massively affected human lives in more than 200 countries. Caused by the coronavirus SARS-CoV-2, this acute respiratory illness affects the human lungs and can easily spread from person to person. Since the disease heavily affects human lungs, analyzing the X-ray images of the lungs may prove to be a powerful tool for disease investigation. In this research, we use the information contained within the complex structures of X-ray images between the cases of COVID-19 and other respiratory diseases, whereas the case of healthy lungs is taken as the reference point. To analyze X-ray images, we benefit from the concept of Shannon's entropy and fractal theory. Shannon's entropy is directly related to the amount of information contained within the X-ray images in question, whereas fractal theory is used to analyze the complexity of these images. The results, obtained in this study, show that the method of fractal analysis can detect the level of infection among different respiratory diseases and that COVID-19 has the worst effect on the human lungs. In other words, the complexity of X-ray images is proportional to the severity of the respiratory disease. The method of analysis, employed in this study, can be used even further to analyze how COVID-19 progresses in affected patients.
Název v anglickém jazyce
COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS DISEASE (COVID-19)
Popis výsledku anglicky
COVID-19 is a pandemic disease, which massively affected human lives in more than 200 countries. Caused by the coronavirus SARS-CoV-2, this acute respiratory illness affects the human lungs and can easily spread from person to person. Since the disease heavily affects human lungs, analyzing the X-ray images of the lungs may prove to be a powerful tool for disease investigation. In this research, we use the information contained within the complex structures of X-ray images between the cases of COVID-19 and other respiratory diseases, whereas the case of healthy lungs is taken as the reference point. To analyze X-ray images, we benefit from the concept of Shannon's entropy and fractal theory. Shannon's entropy is directly related to the amount of information contained within the X-ray images in question, whereas fractal theory is used to analyze the complexity of these images. The results, obtained in this study, show that the method of fractal analysis can detect the level of infection among different respiratory diseases and that COVID-19 has the worst effect on the human lungs. In other words, the complexity of X-ray images is proportional to the severity of the respiratory disease. The method of analysis, employed in this study, can be used even further to analyze how COVID-19 progresses in affected patients.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY
ISSN
0218-348X
e-ISSN
1793-6543
Svazek periodika
28
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000569326300020
EID výsledku v databázi Scopus
2-s2.0-85090010035