Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS DISEASE (COVID-19)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F20%3A00343005" target="_blank" >RIV/68407700:21220/20:00343005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1142/S0218348X20501145" target="_blank" >https://doi.org/10.1142/S0218348X20501145</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218348X20501145" target="_blank" >10.1142/S0218348X20501145</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS DISEASE (COVID-19)

  • Popis výsledku v původním jazyce

    COVID-19 is a pandemic disease, which massively affected human lives in more than 200 countries. Caused by the coronavirus SARS-CoV-2, this acute respiratory illness affects the human lungs and can easily spread from person to person. Since the disease heavily affects human lungs, analyzing the X-ray images of the lungs may prove to be a powerful tool for disease investigation. In this research, we use the information contained within the complex structures of X-ray images between the cases of COVID-19 and other respiratory diseases, whereas the case of healthy lungs is taken as the reference point. To analyze X-ray images, we benefit from the concept of Shannon's entropy and fractal theory. Shannon's entropy is directly related to the amount of information contained within the X-ray images in question, whereas fractal theory is used to analyze the complexity of these images. The results, obtained in this study, show that the method of fractal analysis can detect the level of infection among different respiratory diseases and that COVID-19 has the worst effect on the human lungs. In other words, the complexity of X-ray images is proportional to the severity of the respiratory disease. The method of analysis, employed in this study, can be used even further to analyze how COVID-19 progresses in affected patients.

  • Název v anglickém jazyce

    COMPLEXITY-BASED CLASSIFICATION OF THE CORONAVIRUS DISEASE (COVID-19)

  • Popis výsledku anglicky

    COVID-19 is a pandemic disease, which massively affected human lives in more than 200 countries. Caused by the coronavirus SARS-CoV-2, this acute respiratory illness affects the human lungs and can easily spread from person to person. Since the disease heavily affects human lungs, analyzing the X-ray images of the lungs may prove to be a powerful tool for disease investigation. In this research, we use the information contained within the complex structures of X-ray images between the cases of COVID-19 and other respiratory diseases, whereas the case of healthy lungs is taken as the reference point. To analyze X-ray images, we benefit from the concept of Shannon's entropy and fractal theory. Shannon's entropy is directly related to the amount of information contained within the X-ray images in question, whereas fractal theory is used to analyze the complexity of these images. The results, obtained in this study, show that the method of fractal analysis can detect the level of infection among different respiratory diseases and that COVID-19 has the worst effect on the human lungs. In other words, the complexity of X-ray images is proportional to the severity of the respiratory disease. The method of analysis, employed in this study, can be used even further to analyze how COVID-19 progresses in affected patients.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY

  • ISSN

    0218-348X

  • e-ISSN

    1793-6543

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000569326300020

  • EID výsledku v databázi Scopus

    2-s2.0-85090010035