SVM Algorithm Training for DDoS on SDN Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144435" target="_blank" >RIV/00216305:26220/22:PU144435 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
SVM Algorithm Training for DDoS on SDN Networks
Popis výsledku v původním jazyce
Despite the flexibility provided by SDN technology is also vulnerable to attacks such as DDoS attacks, Network DDoS attack is a serious threat to the Internet today because internet traffic is increasing day by day, it is difficult to distinguish between legitimate and malicious traffic. To alleviate the DDoS attack in the campus network, to mitigate this attack, propose in this paper to classify benign traffic from DDoS attack traffic by SVM of the classification algorithms based on machine learning. As the contribution of this paper is to train the SVM algorithm which has been used in the approach for the training process. Due to the complexity of the dataset, using a type of kernel called a polynomial kernel to accomplish non-linearity discriminative. The results showed that the traffic classification was with the highest accuracy 96 %
Název v anglickém jazyce
SVM Algorithm Training for DDoS on SDN Networks
Popis výsledku anglicky
Despite the flexibility provided by SDN technology is also vulnerable to attacks such as DDoS attacks, Network DDoS attack is a serious threat to the Internet today because internet traffic is increasing day by day, it is difficult to distinguish between legitimate and malicious traffic. To alleviate the DDoS attack in the campus network, to mitigate this attack, propose in this paper to classify benign traffic from DDoS attack traffic by SVM of the classification algorithms based on machine learning. As the contribution of this paper is to train the SVM algorithm which has been used in the approach for the training process. Due to the complexity of the dataset, using a type of kernel called a polynomial kernel to accomplish non-linearity discriminative. The results showed that the traffic classification was with the highest accuracy 96 %
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů