Deep Generative Networks for Algorithm Development in Implantable Neural Technology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146334" target="_blank" >RIV/00216305:26220/22:PU146334 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/22:00362829 RIV/68407700:21730/22:00362829
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9945379" target="_blank" >https://ieeexplore.ieee.org/document/9945379</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53654.2022.9945379" target="_blank" >10.1109/SMC53654.2022.9945379</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Generative Networks for Algorithm Development in Implantable Neural Technology
Popis výsledku v původním jazyce
Electrical stimulation of deep brain structures is an established therapy for drug-resistant focal epilepsy. The emerging implantable neural sensing and stimulating (INSS) technology enables simultaneous delivery of chronic deep brain stimulation (DBS) and recording of electrical brain activity from deep brain structures while patients live in their home environment. Long-term intracranial electroencephalography (iEEG) iEEG signals recorded by INSS devices represent an opportunity to investigate brain neurophysiology and how DBS affects neural circuits. However, novel algorithms and data processing pipelines need to be developed to facilitate research of these long-term iEEG signals. Early-stage analytical infrastructure development for INSS applications can be limited by lacking iEEG data that might not always be available. Here, we investigate the feasibility of utilizing the Deep Generative Adversarial Network (DCGAN) for synthetic iEEG data generation. We trained DCGAN using 3-second iEEG segments and validated synthetic iEEG usability by training a classification model, using synthetic iEEG only and providing a good classification performance on unseen real iEEG with an F1 score 0.849. Subsequently, we demonstrated the feasibility of utilizing the synthetic iEEG in the INSS application development by training a deep learning network for DBS artifact removal using synthetic data only and demonstrated the performance on real iEEG signals. The presented strategy of on-demand generating synthetic iEEG will benefit early-stage algorithm development for INSS applications.
Název v anglickém jazyce
Deep Generative Networks for Algorithm Development in Implantable Neural Technology
Popis výsledku anglicky
Electrical stimulation of deep brain structures is an established therapy for drug-resistant focal epilepsy. The emerging implantable neural sensing and stimulating (INSS) technology enables simultaneous delivery of chronic deep brain stimulation (DBS) and recording of electrical brain activity from deep brain structures while patients live in their home environment. Long-term intracranial electroencephalography (iEEG) iEEG signals recorded by INSS devices represent an opportunity to investigate brain neurophysiology and how DBS affects neural circuits. However, novel algorithms and data processing pipelines need to be developed to facilitate research of these long-term iEEG signals. Early-stage analytical infrastructure development for INSS applications can be limited by lacking iEEG data that might not always be available. Here, we investigate the feasibility of utilizing the Deep Generative Adversarial Network (DCGAN) for synthetic iEEG data generation. We trained DCGAN using 3-second iEEG segments and validated synthetic iEEG usability by training a classification model, using synthetic iEEG only and providing a good classification performance on unseen real iEEG with an F1 score 0.849. Subsequently, we demonstrated the feasibility of utilizing the synthetic iEEG in the INSS application development by training a deep learning network for DBS artifact removal using synthetic data only and demonstrated the performance on real iEEG signals. The presented strategy of on-demand generating synthetic iEEG will benefit early-stage algorithm development for INSS applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
ISBN
978-1-6654-5258-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1736-1741
Název nakladatele
IEEE
Místo vydání
Prague. Czechia
Místo konání akce
Praha
Datum konání akce
9. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—