Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU143556" target="_blank" >RIV/00216305:26220/22:PU143556 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/22:00554373 RIV/00159816:_____/22:00077597 RIV/68407700:21460/22:00353891 RIV/68407700:21730/22:00353891
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1741-2552/ac4bfd" target="_blank" >https://iopscience.iop.org/article/10.1088/1741-2552/ac4bfd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-2552/ac4bfd" target="_blank" >10.1088/1741-2552/ac4bfd</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans
Popis výsledku v původním jazyce
Objective. Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT). Approach. The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz). Main results. We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment. Significance. The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognit
Název v anglickém jazyce
Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans
Popis výsledku anglicky
Objective. Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT). Approach. The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz). Main results. We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment. Significance. The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognit
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neural Engineering
ISSN
1741-2560
e-ISSN
1741-2552
Svazek periodika
19
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000752598200001
EID výsledku v databázi Scopus
2-s2.0-85124438003