Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated unsupervised behavioral state classification using intracranial electrophysiology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00328195" target="_blank" >RIV/68407700:21730/19:00328195 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1741-2552/aae5ab" target="_blank" >https://doi.org/10.1088/1741-2552/aae5ab</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-2552/aae5ab" target="_blank" >10.1088/1741-2552/aae5ab</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated unsupervised behavioral state classification using intracranial electrophysiology

  • Popis výsledku v původním jazyce

    Objective. Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. Approach. Data from eight patients undergoing evaluation for epilepsy surgery (age 40 +/- 11, three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. Main results. Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). Significance. Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.

  • Název v anglickém jazyce

    Automated unsupervised behavioral state classification using intracranial electrophysiology

  • Popis výsledku anglicky

    Objective. Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. Approach. Data from eight patients undergoing evaluation for epilepsy surgery (age 40 +/- 11, three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. Main results. Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). Significance. Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Neural Engineering

  • ISSN

    1741-2560

  • e-ISSN

    1741-2552

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000456333500004

  • EID výsledku v databázi Scopus

    2-s2.0-85062865646