Automated unsupervised behavioral state classification using intracranial electrophysiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00328195" target="_blank" >RIV/68407700:21730/19:00328195 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1741-2552/aae5ab" target="_blank" >https://doi.org/10.1088/1741-2552/aae5ab</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-2552/aae5ab" target="_blank" >10.1088/1741-2552/aae5ab</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated unsupervised behavioral state classification using intracranial electrophysiology
Popis výsledku v původním jazyce
Objective. Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. Approach. Data from eight patients undergoing evaluation for epilepsy surgery (age 40 +/- 11, three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. Main results. Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). Significance. Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.
Název v anglickém jazyce
Automated unsupervised behavioral state classification using intracranial electrophysiology
Popis výsledku anglicky
Objective. Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. Approach. Data from eight patients undergoing evaluation for epilepsy surgery (age 40 +/- 11, three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. Main results. Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). Significance. Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neural Engineering
ISSN
1741-2560
e-ISSN
1741-2552
Svazek periodika
16
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
000456333500004
EID výsledku v databázi Scopus
2-s2.0-85062865646