Behavioral state classification in epileptic brain using intracranial electrophysiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00309724" target="_blank" >RIV/68407700:21730/17:00309724 - isvavai.cz</a>
Výsledek na webu
<a href="http://80.iopscience.iop.org.dialog.cvut.cz/article/10.1088/1741-2552/aa5688/pdf" target="_blank" >http://80.iopscience.iop.org.dialog.cvut.cz/article/10.1088/1741-2552/aa5688/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1741-2552/aa5688" target="_blank" >10.1088/1741-2552/aa5688</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Behavioral state classification in epileptic brain using intracranial electrophysiology
Popis výsledku v původním jazyce
Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age $34pm 12$ , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1–600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80–250 Hz), Fast Ripple (250–600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy >=90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
Název v anglickém jazyce
Behavioral state classification in epileptic brain using intracranial electrophysiology
Popis výsledku anglicky
Objective. Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. Approach. Data from seven patients (age $34pm 12$ , 4 women) who underwent intracranial depth electrode implantation for iEEG monitoring were included. Spectral power features (0.1–600 Hz) spanning several frequency bands from a single electrode were used to train and test a support vector machine classifier. Main results. Classification accuracy of 97.8 ± 0.3% (normal tissue) and 89.4 ± 0.8% (epileptic tissue) across seven subjects using multiple spectral power features from a single electrode was achieved. Spectral power features from electrodes placed in normal temporal neocortex were found to be more useful (accuracy 90.8 ± 0.8%) for sleep-wake state classification than electrodes located in normal hippocampus (87.1 ± 1.6%). Spectral power in high frequency band features (Ripple (80–250 Hz), Fast Ripple (250–600 Hz)) showed comparable performance for AW and SWS classification as the best performing Berger bands (Alpha, Beta, low Gamma) with accuracy >=90% using a single electrode contact and single spectral feature. Significance. Automated classification of wake and SWS should prove useful for future implantable epilepsy devices with limited computational power, memory, and number of electrodes. Applications include quantifying patient sleep patterns and behavioral state dependent detection, prediction, and electrical stimulation therapies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Neural Engineering
ISSN
1741-2560
e-ISSN
1741-2552
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000395425600001
EID výsledku v databázi Scopus
2-s2.0-85015716549