Using Activation Functions for Improving Measure-Level Audio Synchronization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146440" target="_blank" >RIV/00216305:26220/22:PU146440 - isvavai.cz</a>
Výsledek na webu
<a href="https://ismir2022program.ismir.net/poster_195.html" target="_blank" >https://ismir2022program.ismir.net/poster_195.html</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Activation Functions for Improving Measure-Level Audio Synchronization
Popis výsledku v původním jazyce
Audio synchronization aims at aligning multiple recordings of the same piece of music. Traditional synchronization approaches are often based on dynamic time warping using chroma features as an input representation. Previous work has shown how one can integrate onset cues into this pipeline for improving the alignment’s temporal accuracy. Furthermore, recent work based on deep neural networks has led to significant improvements for learning onset, beat, and downbeat activation functions. However, for music with soft onsets and abrupt tempo changes, these functions may be unreliable, leading to unstable results. As the main contribution of this paper, we introduce a combined approach that integrates activation functions into the synchronization pipeline. We show that this approach improves the temporal accuracy thanks to the activation cues while inheriting the robustness of the traditional synchronization approach. Conducting experiments based on string quartet recordings, we evaluate our combined app
Název v anglickém jazyce
Using Activation Functions for Improving Measure-Level Audio Synchronization
Popis výsledku anglicky
Audio synchronization aims at aligning multiple recordings of the same piece of music. Traditional synchronization approaches are often based on dynamic time warping using chroma features as an input representation. Previous work has shown how one can integrate onset cues into this pipeline for improving the alignment’s temporal accuracy. Furthermore, recent work based on deep neural networks has led to significant improvements for learning onset, beat, and downbeat activation functions. However, for music with soft onsets and abrupt tempo changes, these functions may be unreliable, leading to unstable results. As the main contribution of this paper, we introduce a combined approach that integrates activation functions into the synchronization pipeline. We show that this approach improves the temporal accuracy thanks to the activation cues while inheriting the robustness of the traditional synchronization approach. Conducting experiments based on string quartet recordings, we evaluate our combined app
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů